
A Deeper Look at Experience Replay

Shangtong Zhang, Richard S. Sutton
Dept. of Computing Science

University of Alberta
{shangtong.zhang, rsutton}@ualberta.ca

Abstract

Recently experience replay is widely used in
various deep reinforcement learning (RL) al-
gorithms, in this paper we rethink the utility of
experience replay. It introduces a new hyper-
parameter, the memory buffer size, which
needs carefully tuning. However unfortunately
the importance of this new hyper-parameter
has been underestimated in the community for
a long time. In this paper we did a system-
atic empirical study of experience replay under
various function representations. We showcase
that a large replay buffer can significantly hurt
the performance. Moreover, we propose a sim-
ple O(1) method to remedy the negative influ-
ence of a large replay buffer. We showcase its
utility in both simple grid world and challeng-
ing domains like Atari games.

1 Introduction

Experience replay enjoys a great success recently in
the deep RL community and has become a new norm
in many deep RL algorithms (Lillicrap et al. 2015;
Andrychowicz et al. 2017). Until now it is the only
method that can generate uncorrelated data for the on-
line training of deep RL systems except the use of mul-
tiple workers (Mnih et al. 2016), which unfortunately
changes the problem setting somehow. In this paper, we
rethink the utility of experience replay. Some critical
flaw of experience replay is hidden by the complexity
of the deep RL systems, which explains the confusing
phenomena that experience replay itself was proposed in
the early age of RL, but it did not draw much attention
when tabular methods and linear function approximation
dominated the field. Experience replay not only provides
uncorrelated data to train a neural network, but also sig-
nificantly improves the data efficiency (Lin 1992;Wang

et al. 2016), which is a desired property for many RL
algorithms as they are often pretty hungry for data. Al-
though algorithms in pre-deep-RL era do not need to care
about how to stabilize a neural network, they do care
data efficiency. If experience replay is a perfect idea,
it should already be widely used in early ages. However
unfortunately, to our best knowledge no previous work
has shown what is wrong with experience replay.

Moreover, with the success of the Deep-Q-Network
(DQN, Mnih et al. 2015), the community seems to have
a default value for the size of the replay buffer, i.e. 106.
For instance, Mnih et al. (2015) set the size of their replay
buffer for DQN to 106 for various Atari games (Belle-
mare et al. 2013), after which Lillicrap et al. (2015) also
set their replay buffer for Deep Deterministic Policy Gra-
dient (DDPG) to 106 to address various Mujoco tasks
(Todorov et al. 2012). Moreover, Andrychowicz et al.
(2017) set their replay buffer to 106 in their Hindsight
Experience Replay (HER) for a physical robot arm and
Tassa et al. (2018) use a replay buffer with capacity as
106 to solve the tasks in the DeepMind Control Suite. In
the aforementioned works, the tasks vary from simula-
tion environments to real world robots and the function
approximators vary from shallow fully-connected net-
works to deep convolutional networks. However they
all use a replay buffer with same capacity. It seems to
be robust under complex deep RL systems and nobody
bothers to tune the replay buffer size. However when
we separate the experience replay from complex learning
systems, we can easily find the agent is pretty sensitive to
the size of the replay buffer. Some facts of replay buffer
size are hidden by the complexity of the learning system.

Our first contribution is that we present a systematic eval-
uation of experience replay under various function repre-
sentations, i.e. tabular case, linear-function approxima-
tion and non-linear function approximation. We show-
case that both a small replay buffer and a large replay
buffer can heavily hurt the learning process. In other
words, the size of the replay buffer, which has been

ar
X

iv
:1

71
2.

01
27

5v
3 

 [
cs

.L
G

] 
 3

0 
A

pr
 2

01
8




















































































































































































































































































































































































































































































under-estimated by the community for a long time, is
an important task-dependent hyper-parameter that needs
careful tuning. Some facts of experience replay are hid-
den by the complex modern deep RL systems.

Another contribution is that we propose a simple method
to remedy the negative influence of a large replay buffer,
which requires onlyO(1) extra computation. To be more
specific, whenever we sample a batch of transitions, we
add the latest transition to the batch and use the corrected
batch to train the agent. We refer to this method as com-
bined experience replay (CER) in the rest of this paper.

It is important to note that experience replay itself is not a
complete learning algorithm, it has to be combined with
other algorithms to form a complete learning system. In
our evaluation, we consider the combination of experi-
ence replay with Q-learning (Watkins 1989), following
the DQN paradigm.

We perform our evaluation and showcase the utility of
CER in both small toy task, e.g. Grid World, and large
scale challenging domains, e.g. the Lunar Lander and
Atari games.

2 Related Work

CER can be treated inaccurately as a special case of pri-
oritized experience replay (PER, Schaul et al. 2015). In
PER, Schaul et al. (2015) proposed to give the latest tran-
sition a largest priority. However PER is still a stochastic
replay method, which means giving the latest transition
a largest priority does not guarantee it will be replayed
immediately. Moreover, it is important to note that PER
and CER are aimed to solve different problems, i.e. CER
is designed to remedy the negative influence of a large
replay buffer while PER is designed to replay the transi-
tions in the buffer more efficiently. To be more specific,
if the replay buffer size is set properly, we do not ex-
pect CER can further improve the performance however
PER is always expected to improve the performance. Al-
though there is a similar part to CER in PER, i.e. giving a
largest priority to the latest transition, PER never shows
how that part interacts with the size of the replay buffer
and whether that part itself can make a significant contri-
bution to the whole learning system. Furthermore, PER
is anO(logN) algorithm with fancy data structures, e.g.
a sum-tree, which significantly prevents it from being
widely used. However CER is an O(1) plug-in, which
needs only little extra computation and engineer effort.

Liu and Zou (2017) did a theoretical study on the in-
fluence of the size of the replay buffer. However their
analytical study only applies to an ordinary differential
equation model, and their experiments did not properly
handle the episode end by timeout.

Experience replay can be interpreted as a planning
method, because it is comparable to Dyna (Sutton 1991)
with a look-up table. However, the key difference is that
Dyna only samples states and actions, while experience
replay samples full transitions, which may be biased and
potentially harmful.

There are also successful trials to eliminate experience
replay in deep RL. The most famous one is the Asyn-
chronous Advantage Actor-Critic method (Mnih et al.
2016), where experience replay was replaced by par-
allelized workers. The workers are distributed among
processes, and different workers have different random
seeds. As a result, the data collected is still uncorrelated.

3 Algorithms

Experience replay was first introduced by Lin (1992).
The key idea of experience replay is to train the agent
with the transitions sampled from the a buffer of previ-
ously experienced transitions. A transition is defined to
be a quadruple (s, a, r, s′), where s is the state, a is
the action, r is the received reward after executing the
action a in the state s and s′ is the next state. At each
time step, the current transition is added to the replay
buffer and some transitions are sampled from the replay
buffer to train the agent. There are various sampling
strategies to sample transitions from the replay buffer,
among which uniform sampling is the most popular one.
Although there is also prioritized sampling (Schaul et al.
2015), where each transition is associated with a priority,
it always suffers from O(logN) time complexity. So we
therefore constrict our evaluation in uniform sampling.

We compared three algorithms: Q-Learning with online
transitions (referred to as Online-Q, Algorithm 1), Q-
Learning with experience replay (transitions for train-
ing only from the buffer, referred to as Buffer-Q, Al-
gorithm 2) and Q-Learning with CER (referred to as
Combined-Q, Algorithm 3). Online-Q is the primitive
Q-Learning, where the transition at every time step is
used to update the value function immediately. Buffer-Q
refers to DQN-like Q-Learning, where the current tran-
sition is not used to update the value function immedi-
ately. Instead, it is stored into the replay buffer and only
the sampled transitions from the replay buffer are used
for learning. Combined-Q uses both the current transi-
tion and the transitions from the replay buffer to update
the value function at every time step.

4 Testbeds

We use three tasks to evaluate the aforementioned algo-
rithms: a grid world, the Lunar Lander and the Atari
















































































































































































































































































































































































































































































































































































































































Algorithm 1: Online-Q
Initialize the value function Q
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from Q
Execute the action A, get the reward R and the next state S′

Update the value function Q with (S, A, R, S′)
S ← S′

end
end

Algorithm 2: Buffer-Q

Initialize the value function Q
Initialize the replay bufferM
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from Q
Execute the action A, get the reward R and the next state S′

Store the transition (S, A, R, S′) into the replay bufferM
Sample a batch of transitions B fromM
Update the value function Q with B
S ← S′

end
end

Algorithm 3: Combined-Q

Initialize the value function Q
Initialize the replay bufferM
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from Q
Execute the action A, get the reward R and the next state S′

Store the transition t = (S,A,R, S′) into the replay bufferM
Sample a batch of transitions B fromM
Update the value function Q with B and t
S ← S′

end
end












game Pong. Figure 1 elaborates the tasks.

Our first task is a grid world, the agent is placed at the
same location at the beginning of each episode (S in Fig-
ure 1(a)), and the location of the goal is fixed (G in Fig-
ure 1(a)). There are four possible actions {Left, Right,
Up, Down}, and the reward is −1 at every time step, im-
plying the agent should learn to reach the goal as soon as
possible. Some fixed walls are placed in the grid worlds,
and if the agent bumps into the wall, it will remain in the
same position.

Our second task is the Lunar Lander task in Box2D
(Catto (2011)). The state space is R8 with each dimen-
sion unbounded. This task has four discrete actions.
Solving the Lunar Lander task needs careful exploration.
Negative rewards are constantly given during the land-
ing, so the algorithm can easily get trapped in a local
minima, where it avoids negative rewards by doing noth-
ing after certain steps until timeout.

The last task is the Atari game Pong. It is important to
note that our evaluation is aimed to study the idea of ex-
perience replay. We are not going to study how the ex-
perience replay interacts with a deep convolutional net-
work. To this end, it is better to use an accurate state
representation of the game rather than try to learn the
representation during an end-to-end training. We there-
fore use the ram of the game as the state rather than the
raw pixels. A state is then a vector in {0, . . . , 255}128.
We normalize each element of this vector into [0, 1] by
dividing 255. The game Pong has six discrete actions.

To conduct experiments efficiently, we introduce time-
out in our tasks. In other words, an episode will ends
automatically after certain time steps. Timeout is nec-
essary in practice, otherwise an episode can be arbitrar-
ily long. However we have to note that timeout makes
the environment non-stationary. To reduce the influence
of timeout on our experimental results, we manually se-
lected a large enough timeout for each task, so that an
episode rarely ends due to timeout. We set timeout to
5,000, 1,000 and 10,000 for the grid world, the Lunar
Lander and the game Pong respectively. Furthermore,
we use the partial-episode-bootstrap (PEB) technique in-
troduced by Pardo et al. 2017, where we continue boot-
strapping from the next state during the training when
the episode ends due to timeout. Pardo et al. 2017 shows
PEB significantly reduces the negative influence of the
timeout mechanism.

Different mini-batch size has different computation com-
plexity, as a result, throughout our evaluation we do not
vary the batch size and use a mini-batch of fixed size 10
for all the tasks. In other words, we sample 10 transi-
tions from the replay buffer at each time step. For CER,

we only sample 9 transitions, and the mini-batch con-
sists of the sampled 9 transitions and the latest transition.
The behavior policy is a ε-greedy policy with ε = 0.1.
We plot the on-line training progression for each experi-
ment, in other words, we plot the episode return against
the number of training episodes during the on-line train-
ing.

5 Evaluation

5.1 Tabular Function Representation

Among the three tasks, only the grid world is compatible
with tabular methods.

In the tabular methods, the value function q is repre-
sented by a look-up table. The initial values for all state-
action pairs are set to 0, which is an optimistic initial-
ization (Sutton (1996)) to encourage exploration. The
discount factor is 1.0, and the learning rate is 0.1.

Figures 2 (a - c) show the training progression of differ-
ent algorithms with different replay buffer size for the
grid world task. In Figure 2(a), Online-Q solves the task
in about 1, 000 episodes. In Figure 2(b), although all the
Buffer-Q agents with various replay buffer size tend to
find the solution, it is interesting to see that smallest re-
play buffer works best in terms of both the learning speed
and the final performance. When we increase the buffer
size from 102 to 105, the learning speed keeps decreas-
ing. When we keep increasing the buffer size to 106, the
learning speed catches up but is still slower than buffer
size 102. We do not keep increasing the replay buffer size
to a larger value than 106 as in all of our experiments the
total training steps is less than 106. Things are different
in Figure 2(c), all of the Combined-Q agents with dif-
ferent buffer size learn to solve the task at similar speed.
When we zoom in, we can find the agents with large re-
play buffer learn fastest as suggested by the purple line
and the yellow line. This is contrary to what we observed
with the Buffer-Q agents. From Figure 2(b), we can learn
that in the original experience replay a large replay buffer
hurts the performance, and through Figure 2(c) it is clear
that CER makes the agent less sensitive to the replay
buffer size.

Q-learning with a tabular function representation is guar-
anteed to converge under any data distribution only if
each state-action pair is visited infinitely many times (to-
gether with some other weak conditions). However the
data distribution does influence the convergence speed.
In the original experience replay, if a large replay buffer
is used, a rare on-line transition is likely to influence the
agent later compared with a small replay buffer. We use
a simple example to show this. Assume we have a re-
















































































































































































































































































































































































































































































































































Figure 1: From left to right: the grid world, Lunar Lander, Pong

play buffer with size m, and we sample 1 transition from
the replay buffer per time step. We assume the replay
buffer is full at current time step and a new transition t
comes. We then remove the oldest transition in the re-
play buffer and add t into the buffer. The probability that
t is replayed within k (k <= m) time steps is

1− (1− 1

m
)k

This function is monotonically decreasing as m in-
creases. So with a larger replay buffer, a rare transition is
likely to make influence later. If that transition happens
to be important, it will further influence the data collec-
tion of the agent in the future. As a result, the overall
learning speed is slowed down. This explains the phe-
nomena in Figure 2(b) that when we increase the replay
buffer size from 102 to 106 the learning is slowed down.
Note with the replay buffer size 107, the replay buffer
never gets full thus all transitions are well preserved. It
is a special case.

In CER, all the transitions influence the agent immedi-
ately. As a result, the agent becomes less sensitive to the
selection of the replay buffer size.

5.2 Linear Function Approximation

We consider linear function approximation with tile cod-
ing (Sutton and Barto (1998)). Among our three tasks,
only the Lunar Lander task is compatible with tile cod-
ing, so we only consider this task in this part of our eval-
uation. In our experiments, tile coding is done via the tile
coding software 1 with 8 tilings. We set the initial weight
parameters to 0 to encourage exploration. The discount
factor is to 1.0, and the learning rate is 0.1/8 = 0.125.
The results are summarized in Figure 3. Figure 3(b)
shows that a larger replay buffer hurts the learning speed

1http://incompleteideas.net/sutton/
tiles/tiles3.html

in Buffer-Q. Compared with Figure 3(c), it is clear that
adding the on-line transition significantly improves the
learning speed, especially for a large replay buffer. The
results are similar to what we observed with tabular func-
tion representation.

5.3 Non-linear Function Approximation

We use a single hidden layer network as our non-linear
function approximator. We apply the Relu nonlinearity
over the hidden units, and the output units are linear to
produce the state-action value. With a neural network as
the function approximator, Buffer-Q is almost the same
as DQN. Thus we also employs a target network to gain
stable update targets following Mnih et al. 2015. Our
preliminary experiments show that random exploration
at the beginning stage and a decayed exploration rate (ε)
do not help the learning process in our tasks.

In the grid world task we use 50 hidden units, and for the
other tasks we use 100 hidden units. In the grid world
task, we use a one-hot vector to encode the current posi-
tion of the agent. We use a RMSProp optimizer (Tiele-
man and Hinton (2012)) for all the tasks, while the initial
learning rates vary among tasks. We use 0.01, 0.0005
and 0.0025 for the grid world, the Lunar Lander and the
game Pong respectively. These initial learning rates are
empirically tuned to achieve best performance.

Figure 4 shows the learning progression of the agents
with various replay buffer sizes in the grid world task.
We observed that the replay buffer based agents with
buffer size 100 and the Online-Q agent fails to learn any-
thing. It is expected as in this case the network tends to
over-fit recent transitions thus forgets what it has learned
from previous transitions. In Figure 4(a), the Buffer-
Q agent with replay buffer size 104 learns fast. This
is a medium buffer size rather than the smallest replay
buffer size as we observed with tabular and linear func-
tion representation. We hypothesize that there is a trade-





































































































































































































































































(a) Online-Q (b) Buffer-Q (c) Combined-Q

Figure 2: Training progression with tabular function representation in the grid world. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 30 independent runs, and standard errors are plotted.

(a) Online-Q (b) Buffer-Q (c) Combined-Q

Figure 3: Training progression of linear function approximator on the grid world task. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 30 independent runs, and standard errors is plotted.



off between the data quality and data correlation. With
a smaller replay buffer, data tends to be more fresh how-
ever they are highly temporal correlated, while training a
neural network often needs i.i.d. data. With a larger re-
play buffer, the sampled data tends to be uncorrelated,
however they are more outdated. The Buffer-Q agent
with extreme large replay buffer (e.g., 105 or 106) fails
to find the optimal solution. Comparing Figure 4 (a) and
(b), it is clear that CER significantly speeds up the learn-
ing, especially for a large replay buffer.

Figure 5 shows the learning progression of the agents
with various replay buffer sizes in the Lunar Lander task.
Different from the grid world task, the Online-Q agent
and the replay buffer based agents with buffer size 100
do achieve a good performance level. The Online-Q
agent achieves almost the best performance among all
the agents. This suggests that in this task the neural net-
work function approximator is less likely to over-fit re-
cent transitions. From Figure 5(b), it is clear that the
Buffer-Q agent with a medium buffer size (103) achieves
best performance level. With a large replay buffer (105

or 106), the Buffer-Q agent fails to solve the task. Com-
paring Figure 5 (b) and (c), we can see that CER does
improve the performance for agents with a large replay
buffer. One interesting observation is that some replay
buffer based agents tend to over-fit the task after certain
time steps, thus the performance drops. We found even if
we decrease the initial learning rate, this drop still exists.

Figure 6 shows the learning progression of the agents
with various replay buffer sizes in the game Pong. We
observed similar phenomena as the grid world task.
However in this task CER does not provides much im-
provement.

6 Conclusion

Experience replay can improve data efficiency and stabi-
lize the training of a neural network, however it does not
come for free. Some important transitions are delayed
to make effect by experience replay. This flaw is hid-
den by the complexity of model deep RL systems. This
negative effect is partially controlled by the size of re-
play buffer, which is shown in this paper to be an impor-
tant task-dependent hyper-parameter but has been under-
estimated by the community for a long time. PER is a
promising approach addressing this issue, however it of-
ten comes withO(logN) complexity and non-negligible
extra engineer effort. We propose CER, which is simi-
lar to a component in PER but only requires O(1) extra
computation, and showcase it can significantly remedy
the negative influence of a large replay buffer. However
it is important to note that CER is only a workaround, the
idea of experience replay itself is heavily flawed. So fu-

ture effort should focus on developing a new principled
algorithm to fully replace experience replay.

Acknowledgements

The authors thank Kristopher De Asis and Yi Wan
for their thoughtful comments. We also thank Arash
Tavakoli, Vitaly Ledvik and Fabio Pardo for pointing out
the improper processing of timeout termination in the
previous version of the paper.















































































































































































































(a) Online-Q (b) Buffer-Q (c) Combined-Q

Figure 4: Training progression with non-linear function representation in the grid world. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 30 independent runs, and standard errors are plotted.

(a) Online-Q (b) Buffer-Q (c) Combined-Q

Figure 5: Training progression with non-linear function representation in the Lunar Lander. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 30 independent runs, and standard errors are plotted. The curves are smoothed by a sliding window
of size 30.

(a) Online-Q (b) Buffer-Q (c) Combined-Q

Figure 6: Training progression with non-linear function representation in the game Pong. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 10 independent runs, and standard errors are plotted. The curves are smoothed by a sliding window
of size 30. It is expected that the agent does not solve the game Pong, as it is to difficult to approximate the state-value
function with a single-hidden-layer network.












References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J.,

Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
P., and Zaremba, W. (2017). Hindsight experience re-
play. arXiv preprint arXiv:1707.01495.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowl-
ing, M. (2013). The arcade learning environment: An
evaluation platform for general agents. J. Artif. Intell.
Res.(JAIR), 47:253–279.

Catto, E. (2011). Box2d: A 2d physics engine for games.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Contin-
uous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

Lin, L.-H. (1992). Self-improving reactive agents based
on reinforcement learning, planning and teaching. Ma-
chine learning, 8(3/4):69–97.

Liu, R. and Zou, J. (2017). The effects of memory replay
in reinforcement learning.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learn-
ing. In International Conference on Machine Learn-
ing, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Na-
ture, 518(7540):529–533.

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P.
(2017). Time limits in reinforcement learning. arXiv
preprint arXiv:1712.00378.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D.
(2015). Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Sutton, R. S. (1991). Dyna, an integrated architecture
for learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163.

Sutton, R. S. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. In Advances in neural information process-
ing systems, pages 1038–1044.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
learning: An introduction, volume 1. MIT press Cam-
bridge.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas,
D. d. L., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., et al. (2018). Deepmind control suite.
arXiv preprint arXiv:1801.00690.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A
physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, pages 5026–5033. IEEE.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. (2016). Sam-
ple efficient actor-critic with experience replay. arXiv
preprint arXiv:1611.01224.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. PhD thesis, King’s College, Cambridge.


