
The Obstacle Tower:
A Generalization Challenge in Vision, Control, and Planning

Arthur Juliani1, Ahmed Khalifa2, Vincent-Pierre Berges1, Jonathan Harper1,

Hunter Henry1, Adam Crespi1, Julian Togelius2, Danny Lange1
1Unity Technologies, 30 3rd St, San Francisco, CA 94103

2New York University, Brooklyn, New York 11201
{arthurj, vincentpierre, jharper, brandonh, adamc, dlange}@unity3d.com,

ahmed@akhalifa.com, julian@togelius.com

Abstract

The rapid pace of research development in Deep Reinforce-
ment Learning has been driven by the presence of fast and
challenging simulation environments. These environments
often take the form of video games, such as the Atari games
provided in the Arcade Learning Environment (ALE). In the
past year, however, significant progress has been made in
achieving superhuman performance on even the most diffi-
cult and heavily studied game in the ALE: Montezumas Re-
venge. We propose a new benchmark environment, Obstacle
Tower: a high visual fidelity, 3D, 3rd person, procedurally
generated environment. An agent in the Obstacle Tower must
learn to solve both low level control and high-level planning
problems in tandem learning from pixels and a sparse reward
signal in order to make it as high as possible up the tower 1.
In this paper we outline the environment and provide a set of
initial baseline results using current state of the art Deep RL
methods as well as human players. In all cases these algo-
rithms fail to produce agents capable of performing anywhere
near human level on a set of evaluations designed to test both
memorization and generalization ability. As such, we believe
that the Obstacle Tower has the potential to serve as a helpful
Deep RL benchmark now and into the future.

Introduction
It is crucial for the development of artificial intelligence
methods to have good benchmark functions, so that the per-
formance of different methods can be fairly and easily com-
pared. For tree search and reinforcement learning methods,
the benchmarks of choice have often been based on games.
Classic board games such as Checkers and Chess were
prominent in AI research since its inception and spurred the
development of many important techniques (Turing 2004);
for example, the first reinforcement learning algorithm was
developed to play Checkers (Samuel 1959). With the advent
of agents capable of superhuman performance in Othello,
Checkers (Schaeffer et al. 1992), Chess (Hsu et al. 1990)
and Go (Silver et al. 2016), the challenges of this type of
games is increasingly seen as exhausted.

In the last two decades, video games have increasingly
been used as AI benchmarks. In contrast to classic board
AAAI-2019 Workshop on Games and Simulations for Artificial In-
telligence.

1https://github.com/Unity-Technologies/
obstacle-tower-env

games, video games require more frequent decision making,
often in a real-time setting, and additionally contain a more
complex state space. They may or may not also have some
combination of hidden information, stochasticity, complex
interaction rules, and large branching factors. A number of
benchmarks focused on classic 2D arcade games, as well
as first-person shooters and racing games. These games all
had limited branching factors, and the benchmarks built on
them either make a low-dimensional processed observation
of the environment available to the agent, or a fast forward
model which allows for forward planning. This includes
benchmarks based on Super Mario Bros (Karakovskiy and
Togelius 2012), Minecraft (Johnson et al. 2016), Unreal
Tournament (Beattie et al. 2016) and Doom (Kempka et al.
2016). The General Video Game AI competition is a special
case of this, where agents are tasked with playing unseen 2D
arcade-style games (Perez-Liebana et al. 2016).

A new generation of video game-based AI benchmarks
do not provide agents with processed representations of the
environment, but instead forces them to act based on the
raw pixels, i.e. the screen output. The popularity of such
benchmarks go hand-in-hand with the advent of reinforce-
ment learning using deep neural networks as function ap-
proximators, so called deep reinforcement learning, as these
deep networks are capable of processing high-dimensional
input such as screen images. In particular, the Arcade Learn-
ing Environment (ALE), which is based on an emulation of
the Atari 2600 video game console, became one of the more
widely used reinforcement learning benchmark after it was
demonstrated that Deep Q-learning could learn to play many
of these games at a human-competitive level (Bellemare et
al. 2013; Mnih et al. 2015).

One of the games in particular, Montezuma’s Revenge, has
proved to be very hard for reinforcement learning algorithms
because of the sparse rewards and partial observability. The
notorious difficulty of this environment has promoted the
development of a number of novel approaches to Deep RL
algorithms. These include methods which focus on provid-
ing intrinsic reward signals based on state visitation or nov-
elty (Bellemare et al. 2016; Burda et al. 2018a), methods
for hierarchical agent control (Vezhnevets et al. 2017), and
novel approaches to learning from demonstrations (Aytar et
al. 2018). Despite the historical lack of significant progress
on the environment, major progress has taken place in the

https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env







































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Figure 1: Examples of agent observations in the Obstacle Tower at different floor levels. Left Early floor is rendered in the
Ancient theme. Middle Intermediate floor is rendered using the Moorish theme. Right Later floor is rendered in Industrial
theme.

Figure 2: Examples of floor layouts in the Obstacle Tower at different floor levels. Left Early floor is rendered in the Ancient
theme. Middle Intermediate floor is rendered using the Moorish theme. Right Later floor is rendered in Industrial theme.

past year, with the first level being solved by intrinsic-reward
augmented Deep RL approaches (Burda et al. 2018b), and
the entire game being solved using the recently proposed
Go-Explore, a tree search algorithm which focuses on ex-
ploration (Ecoffet et al. 2018).

The Atari 2600, on which ALE is based, is a very limited
machine. It has 128 bytes of RAM, no video memory and
games are typically 2 or 4 kilobytes of ROM; screen output
is low-resolution 2D graphics. The lack of a system clock for
seeding a pseudorandom number generator means that all
games are deterministic. Having variability in the challenge,
ideally through some kind of procedural content generation,
is important for avoiding overfitting in reinforcement learn-
ing, and being able to evaluate what many AI researchers
are actually interested in - agent generalization (Cobbe et al.
2018; Zhang et al. 2018).

Recognizing these limitations, several other game-based
AI environments featuring raw pixel inputs have been pro-
posed. The VizDoom competition and benchmark, based on
the classic first-person shooter Doom is a prominent exam-
ple (Kempka et al. 2016). While it features a first-person per-
spective and complex gameplay, the age of the game means
that the graphics are about as primitive as 3D graphics go;
further, the only kind of randomization is in enemy move-
ment and item spawning, as the level topologies are fixed.
Other recently introduced game-based AI benchmarks, such
as the OpenAI Retro Challenge (Nichol et al. 2018), Coin-

Run (Cobbe et al. 2018), and Pommerman (Resnick et al.
2018) all feature various kinds of environment randomiza-
tion. They are however limited to providing 2D environment
representation and only simple navigation challenges.

Obstacle Tower was developed specifically to overcome
the limitations of previous game-based AI benchmarks, of-
fering a broad and deep challenge, the solving of which
would imply a major advancement in reinforcement learn-
ing. In brief, the features of Obstacle Tower are:

• Physics-driven interactions. The movement of the agent
and other objects within the environment are controlled
by a real-time 3D physics system.

• High visual fidelity. The visual fidelity of the environ-
ment is much closer to photo-realistic than other plat-
forms such as the ALE, VizDoom, or DeepMind Lab
(Beattie et al. 2016) See Figure ?? for examples of the
rendered scene provided to agents to learn from.

• Procedural generation of nontrivial levels and puzzles.
Navigating the game requires both dexterity and planning,
and the levels within the environment are procedurally
generated, meaning that generalization is required to per-
form well on all instances of the task. See ?? for examples
of possible floor layouts of various levels of the Obstacle
Tower.

• Procedurally varied graphics. There are multiple lev-
els of variation in the environment, including the textures,




























































































































































































































































































































































































































































































































































































































































































































































































































































































































































lighting conditions, and object geometry. As such, agents
must be able to generalize their understanding of object
visual appearance.

Obstacle Tower Environment
The Obstacle Tower environment uses the Unity platform
and ML-Agents Toolkit (Juliani et al. 2018). It can run on
the Mac, Windows, and Linux platforms, and can be con-
trolled via the OpenAI Gym interface for easy integration
with existing DeepRL training frameworks (Brockman et al.
2016).

Episode Dynamics The Obstacle Tower environment is
consists of up to 100 floors, with the agent starting on floor
zero. All floors of the environment are treated as a single
finite episode in the Reinforcement Learning context. Each
floor contains at the least a starting room where the agent is
spawned, and a room with stairs to the next floor. Each room
can contain a puzzle to solve, enemies to defeat, obstacles to
evade, or a key to open a locked door. The layout of the
floors and the contents of the rooms within each floor be-
comes more complex at higher floors in the Obstacle Tower.
This provides a natural curriculum for learning agents, al-
lowing them to utilize information gained on earlier floors
to solve tasks at later floors. For more information on the
generation of the floor and room layouts, see the “Procedu-
ral Generation of Floors” section below. Within an episode,
it is only possible for the agent to go to higher floors of the
environment, and not to return to lower floors.

Episodes terminate when the agent encounters a hazard
such as a pit or enemy, when the timer runs out, or when the
agent arrives at the top floor of the environment. The timer
is set at the beginning of the episode, and competing floors
as well as collecting time orbs increase the time left to the
agent. In this way a successful agent must learn behaviors
which trades off between collecting orbs and quickly com-
pleting floors of the tower in order to arrive at the higher
floors before the timer ends.

Observation Space The observation space of the environ-
ment consists of two types of information. The first type of
observation is a rendered pixel image of the environment
from a third person perspective. This image is rendered in
168× 168 RGB, and can be downscaled to the conventional
84 × 84 resolution image typically used in Deep RL pixel-
to-control scenarios such as the Deep Q-Network (Mnih et
al. 2015). The second type of observation is a vector of aux-
iliary variables which describe relevant, non-visual informa-
tion about the state of the environment. The elements which
make up this auxiliary vector are: number of keys agent is in
possession of, as well as the time left in the episode.

Action Space The action space of the environment is
multi-discrete, meaning that it consists of a set of smaller
discrete action spaces, of which the union corresponds to
a single action in the environment. These subspaces are as
follows: forward/backward/no-op movement, left/right/no-
op movement, clockwise/counterclockwise rotation of the
camera, and no-op/jump. We also provide a version of the

environment with this action space flattened into a single
choice between one of 54 possible actions.

Reward Function The Obstacle Tower is designed to be
a sparse-reward environment. The environment comes with
two possible configurations: a sparse and dense reward con-
figuration. In the sparse reward configuration, a positive re-
ward of +1 is provided only upon the agent reaching the
exit stairs of a floor of the tower. In the dense reward ver-
sion a positive reward of +0.1 is provided for opening doors,
solving puzzles, or picking up keys. In many cases even
the dense reward version of the Obstacle Tower will likely
resemble the sparsity seen in previously sparse rewarding
benchmarks, such as Montezuma’s Revenge (Bellemare et
al. 2013). Given the sparse-reward nature of this task, we en-
courage researchers to develop novel intrinsic reward-based
systems, such as curiosity (Pathak et al. 2017), empower-
ment (Mohamed and Rezende 2015), or other signals to aug-
ment the external reward signal provided by the environ-
ment.

Procedural Generation of Floors
Each floor of the Obstacle Tower environment contains pro-
cedurally generated elements which impact multiple differ-
ent aspects of the agent’s experience. These include pro-
cedurally generated lighting, room layout, as well as over-
all floor plan. Together these elements ensure that it is ex-
tremely unlikely that any two instances of the Obstacle
Tower generated from two different random seeds contain
even one identical floor. This proceduralism also ensures
that for agents to do well on new instances of the Obstacle
Tower, they must have learned some general purpose repre-
sentations of the task at the levels of vision, low-level con-
trol, and high-level planning.

Visual Appearance On each floor of the Obstacle Tower
various aspects of the appearance of the environment are
generated procedurally. This includes the selection of a vi-
sual theme which determines the textures and geometry to be
used, as well as a set of generated lighting conditions. Exam-
ples of visual themes include Ancient, Moorish, Industrial.
The lighting conditions include the direction, intensity, and
color of the real-time light in the scene.

Floor layout The floor layout is generated using a proce-
dure inspired by Dormans (Dormans 2010). The floor layout
generation is divided into two parts: a mission graph and a
layout grid.

The mission graph is responsible for the flow of the mis-
sion in the current level. For example: to finish the level the
player needs to get a key then solve a puzzle then unlock
the door to reach the stairs for the next level. Similar to Dor-
mans, we used graph grammar which is a branch of genera-
tive grammar to generate the mission graph.

In Obstacle Tower, we constructed eight different graph
grammar rules that can transform our starting graph (con-
sists of two nodes start and exit) to generate a range of
different floor configurations of varying difficulty levels. To
understand the grammar, we must specify the node types that
are being used. Also, each node is associated with an access


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































level number. Access level determines the minimum number
of locks or puzzles that need to be passed in order to reach
that room. The following list all the different types of rooms:
• Start (S): is the starting node in the dungeon.
• Exit (E): is the end node in the dungeon that the player

need to reach.
• Key (K): is a node that contains a key.
• Lock (L): is a node that can’t be entered without a key.
• Puzzle (P): is a node that contain a puzzle/challenge that

need to be passed to continue.
• Lever (V): is a node that contains a lever that need to be

pressed to pass to the next room.
• Normal (N): any other node that doesn’t follow any of the

above.

1:Ax

2:Ax

1:Ax

2:Ax

3:Nx

(a) AddNormal Rule

1:Ax

2:Ax

1:Ax

2:Ax+1

3:Kx

4:Lx+1

(b) AddKeyLock Rule

1:Ax

2:Ax

1:Ax

2:Ax+1

3:Px

(c) AddPuzzle Rule

1:Ax

1:Ax

3:Nx

2:Kx

2:Kx

(d) AddNormalKey Rule

Figure 3: Four examples of Obstacle Tower mission graph
rules.

Figure 3 shows four of the graph rules used during gen-
eration. The letter in the node specifies the node type, while
the small subscript number is the access level. The first num-
ber is used to make a mapping between nodes in the gram-
mar. Circular nodes are considered as wild card nodes which
means it can match any node. These rules are applied on the
starting graph (consists of two connected nodes with access
level of zero of type start and exit) using what is called a
graph recipe. A graph recipe is a sequence of graph grammar
rules that are applied after each other to generate a level. The
recipe contains some randomness by allowing each rule to
be applied randomly more than once. In Obstacle Tower, the
system use different graph recipes for each group of levels
to generate more complex floor layouts in later levels than
the beginning levels.

After generating the mission graph, we need to transform
that graph into 2D grid of rooms which is called layout grid.
A simpler grammar called shape grammar (Stiny and Gips
1971) is used in the transformation process which is simi-
lar to Dorman’s transformation process(Dormans 2010). For

1:S0

3:N0 

5:L1 7:P1 9:E2 

6:N0 8:L1 

10:K1 

11:V1 

2:K0 

(a)

1:S0 00

0

0

2:K0 00

0

0

3:N0 00

0

0

5:L1 10

1

1

6:N0 00

0

0

7:P1 22

1

2

9:E2

2

8:L1 11

0

1

10:K1 11

1

1

11:V1 01

0

0

C0

0

0

C0 

0

0

(b)

Figure 4: An example showing the generated mission graph
in Obstacle Tower in figure 4a and its corresponding layout
in figure 4b.

every node in the mission graph starting from the Start node,
we allocate a room on the grid that connects to a previ-
ous room of same access level from any of the four direc-
tions (North, South, East, and West). After allocating all of
the rooms and their correct connections (locks for locked
connections, controlled doors for lever connections, etc), we
transform any other connections to solid. At any point if mis-
sion graph or layout grid failed to generate a valid output, we
just rerun the algorithm until it fits.

Figure 4 shows a mission graph generated by the system
and its corresponding layout where black links means they
turned to solid and C rooms are new rooms introduced to
make sure that some of the connections in the level are pos-
sible (the lever node 11 back to the key node 2). As we can
see the layout generation keeps track of all the possible con-
nection with different access levels from each room as any
room with the same access level can be connected. Another
thing that is not shown in the figure is that the layout gen-
erator makes sure nodes have an access level parent, a node
that changes the access level in the graph such as Lock, Puz-
zle, and Lever nodes. The algorithm make sure that if any
node comes after any of these nodes, it is still connected to
it through its parent.

Room layout For the generation of the layout of each
room within a floor, we used a template-based system sim-
ilar to that used in the popular video game Spelunky (Yu
2016). In this system each of the different room types, such
as Puzzle or Key have their own set of templates from
which specific room configurations are drawn from. These
templates consist of a grid of characters which represents
the potential layout of the room. These grids can be either
3×3, 4×4, or 5×5. The specific placement of the modules
and items within a room is based on these templates. The
template can define the specific module or item to be placed
in each position within the room, or define a category from
which a specific module or item is drawn and placed prob-
abilistically. In this way a finite number of templates can
be used to generate a much larger number of possible room
configurations.














































































































































































































































































































































































































































































































































































































































































































































































































































































Evaluation Criteria
It is essential that the evaluation of agent performance on
environments such as the one described here be as repro-
ducible and interpretable as possible. Below we provide a
set of evaluation criteria to be used when benchmarking the
performance of an agent within the Obstacle Tower. This
criteria described here are inspired by a recent set of recom-
mendations by Henderson and colleagues (Henderson et al.
2017).

Non-Generalization Evaluation It is possible to evaluate
the performance of an agent on a single, fixed version of the
Obstacle Tower. This evaluation regime may be of interest
to researchers focusing on optimization and data throughput
during training rather than the development of algorithms
which provide agents with novel cognitive abilities. In this
case we recommend explicitly reporting that the evaluation
was performed on a fixed version of the Obstacle Tower,
and also reporting performance on five random seeds of the
dynamics of the agent. We performed training for 20 million
environment time-steps, using the default hyperparameters
provided for use with environments from the ALE.

Generalization Evaluation The Obstacle Tower is de-
signed to explicitly test the generalization ability of agents.
As such, we recommend evaluating the performance of
agents on a held-out set of tower configurations which the
agent is not exposed to during training.

• Weak Generalization Agents should be trained on a fixed
set of 100 seeds for the environment configurations. They
should then be tested on a held-out set of five randomly
selected tower configuration seeds not in the training set.
Each should be evaluated each five times using differ-
ent random seeds for the dynamics of the agent (initial
weights of the policy and/or value network(s)).

• Strong Generalization In addition to the requirements
for weak generalization, agents should be tested on a held-
out visual theme which is separate from the ones on which
it was trained. In this paper we train on the Ancient and
Moorish themes, and test on the Industrial theme.

Value as a Research Benchmark
The Obstacle Tower is designed to provide a meaning-
ful challenge to current and future AI agents, specifically
those trained using the pixels-to-control approach. There
are four axes of challenge which we believe that this envi-
ronment provides: Vision, Control, Planning, and General-
ization. While various other environments and benchmarks
have been used to provide difficult challenges for AI agents,
this is to the best of our knowledge the first benchmark
which combines all such axes of complexity.

Generalization As mentioned above, the Obstacle Tower
relies heavily on procedural generation for the creation of
each instance of the environment. This focus on procedu-
ralism is designed with the goal of enabling the evaluation
of the generalization abilities of agents. There have recently
been a number of similar approaches to introducing specific

challenges around generalization, such as the CoinRun envi-
ronment (Cobbe et al. 2018) or the environments in the Gen-
eral Video Game AI challenge (Perez-Liebana et al. 2016).

Vision As described above, the main source of observa-
tion information to agents within the the Obstacle Tower is a
rendered RGB image of the environment from a third person
perspective. Unlike previous environments such as the ALE
(Bellemare et al. 2013), VizDoom (Kempka et al. 2016),
and Malmo (Johnson et al. 2016), which contain low res-
olution textures, simple 3D geometry, and simple lighting,
the Obstacle Tower contains high-fidelity real-time lighting,
complex 3D shapes, and high-resolution textures. All of this
combined corresponds to a visual observation which better
emulates that of the physical world than these other envi-
ronments. Furthermore, the floors in the environment can be
rendered in one of multiple different visual themes, such as
Ancient or Industrial. The combination of high-fidelity visu-
als in addition to visual variation means that we expect mod-
els with much greater representational capacity than models
used in previous approaches such as A3C (Mnih et al. 2016)
or DQN (Mnih et al. 2015) will be needed to perform well
at interpreting the visual information in the environment.

Generalization & Vision Humans can easily understand
that two different doors seen under different lighting condi-
tions are still doors. We expect that general-purpose agents
should have similar abilities, however this is not the case. In
many cases agents trained under one set of visual conditions,
and then tested on even a slightly different visual conditions
perform much worse at the same task. This can be seen in
cases where slight perturbations of the RBG image obser-
vation provided to the agent result in dramatic decreases in
performance (Huang et al. 2017). The procedural lighting
and visual appearance of floors within the Obstacle Tower
means that agents will need to be able to generalize to new
visual appearances which they may never have directly ex-
perienced before.

Control In order for the agent to perform well on the
Obstacle Tower environment, it must be able to navigate
through multiple rooms and floors. Each of these rooms can
contain multiple possible obstacles, enemies, and moving
platforms, all of which require fine-tuned control over the
agent’s movement. Floors of the environment can also con-
tain puzzle rooms, which involve the physical manipulation
of objects within the room in order to unlock doors to other
rooms on the floor. We expect that in order for agents to per-
form well on these sub-tasks, the ability to model and predict
the results of the agents actions within the environment will
be of benefit.

Generalization & Control The layout of the rooms on
ever floor are different on each instance of the Obstacle
Tower, as such we expect methods which are designed to ex-
ploit determinism of the training environment, such as Brute
(Machado et al. 2017) and Go-Explore (Ecoffet et al. 2018)
to perform poorly on the test set of environments. It is also
the case that within a single instance of a Tower, there are
elements of the environment which contain stochastic be-
havior, such as the movement of platforms and enemies.




























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Planning Depending on the difficulty of the floor, some
floors of the Obstacle Tower require reasoning over multiple
dependencies in order to arrive at the end room. For exam-
ple, some rooms cannot be accessed without a key that can
only be obtained in rooms sometimes very far from the door
they open, thus requiring planning the path to take appropri-
ately in order not to waste the limited time the agent has.

Generalization & Planning Due to the procedural gen-
eration of each floor layout within the Obstacle Tower, it is
not possible to re-use a single high-level plan between floors.
It is likewise not possible to re-use plans between environ-
ment instances, as the layout of each floor is determined by
the environment’s generation seed. Because of this, plan-
ning methods which require computationally expensive state
discovery phases are likely not able to generalize to unseen
floor layouts.

Preliminary Results
In order to analyze the difficulty, and by extension the value
of the Obstacle Tower as a benchmark, we conducted a pre-
liminary evaluation of the performance of both humans and
learned agents within the environment. We evaluated per-
formance within three distinct conditions, each designed to
provide insight into the level of generalization ability that
the human or agent possesses. We conducted this evaluation
on a version of the Obstacle Tower which contains a max-
imum of 25 floors, and a limited subset of visual themes,
floor configurations, and object types. We performed eval-
uation within the three conditions described under ”Evalu-
ation Criteria:” No Generalization - training and testing on
the same fixed environment, Weak Generalization - training
on testing on separate sets of environment seeds, and Strong
Generalization - training and testing on separate sets of en-
vironment seeds with separate visual themes.

Human Performance
In order to understand the expected quality of performance
from a human-level agent, we conducted a series of evalu-
ations with human play-testers. These were drawn from a
pool of Unity Technologies employees who volunteered to
participate in the evaluation process. Overall fifteen partic-
ipants took place in the evaluation. For human evaluation,
training corresponds to the initial five minutes of playtime.

Condition Train Test Test (Max)

No Gen. 15.2 (2.9) 15.2 (2.9) 22
Weak Gen. 12.3 (2.9) 15.6 (3.5) 21
Strong Gen. 12 (6.8) 9.3 (3.1) 20

Table 1: Results of human evaluation on under different con-
ditions. Performance results under Train and Test are re-
ported as the mean (std) of the number of floors solved in
a single episode. Results reported under Test (Max) corre-
spond to maximum floor reached by a participant in each
condition.

See Table 1 for human performance results. In the No
Generalization and Weak Generalization conditions humans
were able to solve an average of 15 floors during the test
phase, with no different in performance between the two
conditions. Human participants performed slightly worse in
the Strong Generalization condition, however were still able
to solve up to 20 floors in this condition as well. As expected,
these results suggest that humans are able to transfer their
knowledge gained during training time to perform consis-
tently on the same environment, as well new configurations
of the environment not seen during the training phase. In
fact we find that human performance increases between the
training and testing phases due to the ability of humans to
continue to rapidly learn from small amounts of data.

Agent Performance
In addition to evaluating the performance of human play-
ers, we also evaluated the performance of agents trained us-
ing Deep RL. In particular we utilized the OpenAI Base-
line implementation of of Proximal Policy Optimization
(PPO) (Schulman et al. 2017) as well as the implementa-
tion of Rainbow provided by Google Brain’s Dopamine li-
brary (Hessel et al. 2018)2. These two were chosen for being
the standard implementations of current state of the art on-
policy and off-policy algorithms.

0.0 0.5 1.0 1.5 2.0
Time Steps 1e7

0

1

2

3

4

5

6

7

M
ea

n
E

pi
so

di
c

R
ew

ar
d

RNB-Fixed
RNB-Varied
PPO-Fixed
PPO-Varied

Figure 5: Mean episodic reward received during training
by agent trained using OpenAI Baseline PPO (PPO) and
Dopamine Rainbow (RNB) in the Fixed and Varied training
conditions.

We performed training under the No Generalization
(Fixed) and Weak Generalization (Varied) conditions, and
performed evaluation on all three conditions. We utilized

2https://github.com/openai/baselines;
https://github.com/google/dopamine

https://github.com/openai/baselines
https://github.com/google/dopamine


















































































































































































































































































































































































































































































































































































































































the default hyperparameters provided by each library for use
with Atari benchmarks, in order to provide comparable re-
sults with evaluations performed on the ALE. We utilize the
ability to run parallel environments within OpenAI Base-
lines to collect data from 50 concurrently running environ-
ments. In the case of Rainbow we collect data from a single
environment running serially.

We conducted training sessions spanning 20 million and
10 million environment steps for PPO and Rainbow, respec-
tively. See Figure 5 for graphs of the mean reward during
training of the two algorithms in both the varied and fixed
conditions. We find that agents trained using either algo-
rithm are able to solve fewer than 10 floors in both the fixed
and varied conditions. While both algorithms trained in the
fixed condition produce similar performance scores, the dis-
crepancy between training performance under the two con-
ditions is much greater with PPO compared to Rainbow. In
the case of PPO in the varied condition the agent achieves
less than a reward of 1, whereas the Rainbow agent trained
in the varied condition receives an average reward of 5 by
the end of training.

Condition PPO (F) PPO (V) RNB (F) RNB (V)
No Gen. 5.0 (0.0) 1.0 (0.0) 5.0 (0.0) 5.0 (0.0)

Weak Gen. 1.2 (0.4) 0.8 (0.4) 0.6 (0.8) 3.2 (1.1)
Strong Gen. 0.6 (0.8) 0.6 (0.5) 0.0 (0.0) 1.6 (0.5)

Table 2: Results comparing trained models on three eval-
uation conditions. “F” corresponds to fixed training envi-
ronment (one environment seed). “V” corresponds to varied
training environment (100 environment seeds). Performance
results are reported as the mean (std) of the number of floors
solved in a single episode.

When the models described above were benchmarked in
the three evaluation conditions, we find that they consis-
tently perform poorly compared to the human results, fail-
ing to reach even an average floor completion score of 6.
It is at floor 5 that the room mechanic of locked doors is
introduced. We find that agents are unable to solve this sub-
task, and therefore are no longer able to make progress in
the tower. See Table 2 for the full set of results.

Surprisingly, we find that in the case of PPO, agents
trained on the fixed version of the environment are able to
generalize better than agents trained in the varied version.
One potential explanation for this is that while agents in the
fixed environment are only exposed to a single instance of
the tower, they are able to make more progress on this single
instance, and therefore able to learn more useful behaviors
which can be re-purposed on new instances of the tower. In
comparison the agents trained using Rainbow under the var-
ied condition outperforms all other algorithms and training
conditions in terms of evaluation performance on the gener-
alization conditions.

As expected, agents trained on either condition perform
significantly worse in the Strong Generalization evaluation
condition. Whereas the PPO agents fail to achieve an aver-
age floor completion of one, the Rainbow (Varied) agent is

able to complete an average of over one floor in the Strong
Generalization condition.

Discussion
In this paper we have described the Obstacle Tower, a new
research challenge for AI agents, and provided a discus-
sion of why we believe the environments serves as a com-
pelling research challenge. Furthermore, our preliminary re-
sults suggest that current state of the art methods achieve far
less than human level performance on all experimental con-
ditions. While the Rainbow (varied) agent is able to display
limited generalization capabilities, these are still consider-
ably worse than humans.

We believe that in order for learned agents to better per-
form on the task, fundamental improvements to the state of
the art in the field will be required. We expect that these
improvements will be more generally applicable beyond the
Obstacle Tower itself, with impacting broader domains such
as robotic navigation and planning.

Potential Areas of Research
Here we briefly sketch some potential research areas we be-
lieve may be fruitful to explore in aiming towards better per-
formance on the Obstacle Tower.

Hierarchical Control The overall goal of an agent in the
Obstacle Tower is to arrive at as high a floor in the tower as
possible. This goal can naturally be decomposed into at least
two levels of task: solving any individual floor, and navigat-
ing between any two rooms. We believe this structure in the
environment provides the opportunity to explore hierarchi-
cal control schemes (Kaelbling, Littman, and Moore 1996).
One such scheme could involve the use of a high-level plan-
ner solving for each floor, and a low-level reactive controller
navigating the obstacles within a given room. It is also pos-
sible that the exact nature of the hierarchical structure can be
learned in an unsupervised and unstructured manner, as was
done in the FuN architecture (Vezhnevets et al. 2017).

Intrinsic Motivation The Obstacle Tower environment
contains very sparse rewards. One class of methods devel-
oped to deal with sparse rewards are intrinsic motivations.
These included approaches to rewarding the agent based on
state-novelty (Bellemare et al. 2016), curiosity (Pathak et
al. 2017), or empowerment (Mohamed and Rezende 2015).
Curiosity-driven methods in particular have been shown to
perform well on sparse-reward tasks involving 3D environ-
ments, motivating our use of them in the baseline results de-
scribed above. We believe that extending this line of work to
tasks in which the test environment is different from that in
which the original curiosity reward was received is a promis-
ing future area to explore.

Meta-Learning Despite great successes in learning from
large fixed data sets such as ImageNet (Krizhevsky,
Sutskever, and Hinton 2012), attention has been drawn to the
need for machine learning models to be able to quickly adapt
to new situations at test time. This includes situations which
differ significantly from those which they were exposed to
during training. The general ability of a learning system to

































































































































































































































































































































































































































































































































































































































address this problem is referred to as meta-learning (Vilalta
and Drissi 2002). Recent work has shown that it is possible
to for models to quickly adapt to new scenarios within the
context of Deep Reinforcement Learning using either a sin-
gle gradient update (Finn, Abbeel, and Levine 2017), or af-
ter being trained under specific conditions using a recurrent
model architecture (Wang et al. 2016). We believe that the
ability for an agent to quickly adapt to the conditions of an
unseen configuration of the Obstacle Tower will be needed
in order for an agent to perform well on the environment.

World-Model Learning In contrast to model-free Rein-
forcement Learning approaches such as DQN (Mnih et al.
2015) and PPO (Schulman et al. 2017), model-based Re-
inforcement Learning methods such as GPS (Levine, Wa-
gener, and Abbeel 2015) that has focused on learning the
dynamics of the environment, and then exploiting those
in some way to better learn a policy. Given the need for
control within an environment in which there are com-
plex, but relatively high-level movement dynamics, such as
moving platforms or blocks, we expect that approaches to
model the dynamics of these objects, and then learn from
them can be of particular advantage (Agrawal et al. 2016;
Ha and Schmidhuber 2018).

Future Extensions
What is described here corresponds to the initial version of
the Obstacle Tower (v1.0). It is being released alongside the
Obstacle Tower Challenge: a contest designed to encourage
research using this environment 3. This version is limited to
25 floors, and a small number of configurable options. Over
the next year we plan to continue to develop the environment
going forward in order to extend its functionality and usabil-
ity by different groups of researchers. For example, we plan
to add additional visual themes, floor layouts, and interactive
elements in future releases.

We plan to release a completely open-source version of
the Obstacle Tower project code in the coming months. This
version will provide the ability to easily configure the envi-
ronment in a number of ways such as alternating between
first and third person views, adding additional state informa-
tion such as a representation of the current floor layout, the
freedom to modify the reward function, along with the abil-
ity to add new module and item types into the procedural
generation system. We hope that these extensions will al-
low the Obstacle Tower to not only be useful as a high-end
benchmark of agents abilities, but also as a more general
customizable environment for posing novel tasks to learning
agents.

Conclusion
For the past few years the Arcade Learning Environment,
and the game Montezuma’s Revenge in particular has been
used as a benchmark to both measure and guide progress in
Deep Reinforcement Learning. We hope that the Obstacle
Tower environment, with the focus on unsolved problems
in vision, control, planning, and generalization, can serve

3http://unity3d.com/OTC

the community in a similar way for the coming years. We
encourage researchers interested in the environment to par-
ticipate in our open challenge, and look forward to seeing
the results and novel approaches to algorithm design which
participants develop.

Acknowledgments
The authors acknowledge the financial support from NSF
grant (Award number 1717324 - ”RI: Small: General Intel-
ligence through Algorithm Invention and Selection.”).

We would additionally like to thank Leon Chen, Jeff Shih,
Marwan Mattar, Vilmantas Balasevicius, Ervin Teng, and
Yuan Gao for helpful feedback and support during the de-
velopment and evaluation of this environment, as well as all
the Unity Technology employees who took part in the hu-
man performance evaluation process.

References
[Agrawal et al. 2016] Agrawal, P.; Nair, A. V.; Abbeel, P.;
Malik, J.; and Levine, S. 2016. Learning to poke by pok-
ing: Experiential learning of intuitive physics. In Advances
in Neural Information Processing Systems, 5074–5082.

[Aytar et al. 2018] Aytar, Y.; Pfaff, T.; Budden, D.; Paine,
T. L.; Wang, Z.; and de Freitas, N. 2018. Playing hard
exploration games by watching youtube. arXiv preprint
arXiv:1805.11592.

[Beattie et al. 2016] Beattie, C.; Leibo, J. Z.; Teplyashin, D.;
Ward, T.; Wainwright, M.; Küttler, H.; Lefrancq, A.; Green,
S.; Valdés, V.; Sadik, A.; et al. 2016. Deepmind lab. arXiv
preprint arXiv:1612.03801.

[Bellemare et al. 2013] Bellemare, M. G.; Naddaf, Y.; Ve-
ness, J.; and Bowling, M. 2013. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47:253–279.

[Bellemare et al. 2016] Bellemare, M.; Srinivasan, S.; Ostro-
vski, G.; Schaul, T.; Saxton, D.; and Munos, R. 2016. Uni-
fying count-based exploration and intrinsic motivation. In
Advances in Neural Information Processing Systems, 1471–
1479.

[Brockman et al. 2016] Brockman, G.; Cheung, V.; Petters-
son, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba,
W. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

[Burda et al. 2018a] Burda, Y.; Edwards, H.; Pathak, D.;
Storkey, A.; Darrell, T.; and Efros, A. A. 2018a. Large-
scale study of curiosity-driven learning. arXiv preprint
arXiv:1808.04355.

[Burda et al. 2018b] Burda, Y.; Edwards, H.; Storkey, A.;
and Klimov, O. 2018b. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894.

[Cobbe et al. 2018] Cobbe, K.; Klimov, O.; Hesse, C.; Kim,
T.; and Schulman, J. 2018. Quantifying generalization in
reinforcement learning. arXiv preprint arXiv:1812.02341.

[Dormans 2010] Dormans, J. 2010. Adventures in level de-
sign: Generating missions and spaces for action adventure
games. In Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, PCGames ’10. ACM.

http://unity3d.com/OTC













































































































































































































































































[Ecoffet et al. 2018] Ecoffet, A.; Huizinga, J.; Lehman, J.;
Stanley, K.; and Clune, J. 2018. Montezuma’s revenge
solved by go-explore, a new algorithm for hard-exploration
problems (sets records on pitfall too).

[Finn, Abbeel, and Levine 2017] Finn, C.; Abbeel, P.; and
Levine, S. 2017. Model-agnostic meta-learning for
fast adaptation of deep networks. arXiv preprint
arXiv:1703.03400.

[Ha and Schmidhuber 2018] Ha, D., and Schmidhuber, J.
2018. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, 2455–
2467.

[Henderson et al. 2017] Henderson, P.; Islam, R.; Bach-
man, P.; Pineau, J.; Precup, D.; and Meger, D. 2017.
Deep reinforcement learning that matters. arXiv preprint
arXiv:1709.06560.

[Hessel et al. 2018] Hessel, M.; Modayil, J.; Van Hasselt, H.;
Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot,
B.; Azar, M.; and Silver, D. 2018. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[Hsu et al. 1990] Hsu, F.-h.; Anantharaman, T.; Campbell,
M.; and Nowatzyk, A. 1990. A grandmaster chess machine.
Scientific American 263(4):44–51.

[Huang et al. 2017] Huang, S.; Papernot, N.; Goodfellow, I.;
Duan, Y.; and Abbeel, P. 2017. Adversarial attacks on neural
network policies. arXiv preprint arXiv:1702.02284.

[Johnson et al. 2016] Johnson, M.; Hofmann, K.; Hutton, T.;
and Bignell, D. 2016. The malmo platform for artificial
intelligence experimentation. In IJCAI, 4246–4247.

[Juliani et al. 2018] Juliani, A.; Berges, V.-P.; Vckay, E.;
Gao, Y.; Henry, H.; Mattar, M.; and Lange, D. 2018. Unity:
A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627.

[Kaelbling, Littman, and Moore 1996] Kaelbling, L. P.;
Littman, M. L.; and Moore, A. W. 1996. Reinforcement
learning: A survey. Journal of artificial intelligence
research 4:237–285.

[Karakovskiy and Togelius 2012] Karakovskiy, S., and To-
gelius, J. 2012. The mario ai benchmark and competitions.
IEEE Transactions on Computational Intelligence and AI in
Games 4(1):55–67.

[Kempka et al. 2016] Kempka, M.; Wydmuch, M.; Runc, G.;
Toczek, J.; and Jaśkowski, W. 2016. Vizdoom: A doom-
based ai research platform for visual reinforcement learn-
ing. In Computational Intelligence and Games (CIG), 2016
IEEE Conference on, 1–8. IEEE.

[Krizhevsky, Sutskever, and Hinton 2012] Krizhevsky, A.;
Sutskever, I.; and Hinton, G. E. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances
in neural information processing systems, 1097–1105.

[Levine, Wagener, and Abbeel 2015] Levine, S.; Wagener,
N.; and Abbeel, P. 2015. Learning contact-rich manipu-
lation skills with guided policy search. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on,
156–163. IEEE.

[Machado et al. 2017] Machado, M. C.; Bellemare, M. G.;
Talvitie, E.; Veness, J.; Hausknecht, M.; and Bowling, M.
2017. Revisiting the arcade learning environment: Evalua-
tion protocols and open problems for general agents. arXiv
preprint arXiv:1709.06009.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Ried-
miller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015.
Human-level control through deep reinforcement learning.
Nature 518(7540):529.

[Mnih et al. 2016] Mnih, V.; Badia, A. P.; Mirza, M.; Graves,
A.; Lillicrap, T.; Harley, T.; Silver, D.; and Kavukcuoglu,
K. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning,
1928–1937.

[Mohamed and Rezende 2015] Mohamed, S., and Rezende,
D. J. 2015. Variational information maximisation for in-
trinsically motivated reinforcement learning. In Advances in
neural information processing systems, 2125–2133.

[Nichol et al. 2018] Nichol, A.; Pfau, V.; Hesse, C.; Klimov,
O.; and Schulman, J. 2018. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint
arXiv:1804.03720.

[Pathak et al. 2017] Pathak, D.; Agrawal, P.; Efros, A. A.;
and Darrell, T. 2017. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Ma-
chine Learning (ICML), volume 2017.

[Perez-Liebana et al. 2016] Perez-Liebana, D.; Samothrakis,
S.; Togelius, J.; Lucas, S. M.; and Schaul, T. 2016. Gen-
eral video game ai: Competition, challenges and opportuni-
ties. In Thirtieth AAAI Conference on Artificial Intelligence,
4335–4337.

[Resnick et al. 2018] Resnick, C.; Eldridge, W.; Ha, D.;
Britz, D.; Foerster, J.; Togelius, J.; Cho, K.; and Bruna,
J. 2018. Pommerman: A multi-agent playground. arXiv
preprint arXiv:1809.07124.

[Samuel 1959] Samuel, A. L. 1959. Some studies in ma-
chine learning using the game of checkers. IBM Journal of
research and development 3(3):210–229.

[Schaeffer et al. 1992] Schaeffer, J.; Culberson, J.; Treloar,
N.; Knight, B.; Lu, P.; and Szafron, D. 1992. A world
championship caliber checkers program. Artificial Intelli-
gence 53(2-3):273–289.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal,
P.; Radford, A.; and Klimov, O. 2017. Proximal policy op-
timization algorithms. arXiv preprint arXiv:1707.06347.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C. J.;
Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser,
J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al.
2016. Mastering the game of go with deep neural networks
and tree search. nature 529(7587):484.

[Stiny and Gips 1971] Stiny, G., and Gips, J. 1971. Shape
grammars and the generative specification of painting and
sculpture. In IFIP Congress (2), volume 2.

[Turing 2004] Turing, A. 2004. Intelligent machinery
(1948). B. Jack Copeland 395.



[Vezhnevets et al. 2017] Vezhnevets, A. S.; Osindero, S.;
Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; and
Kavukcuoglu, K. 2017. Feudal networks for hierarchical
reinforcement learning. arXiv preprint arXiv:1703.01161.

[Vilalta and Drissi 2002] Vilalta, R., and Drissi, Y. 2002. A
perspective view and survey of meta-learning. Artificial In-
telligence Review 18(2):77–95.

[Wang et al. 2016] Wang, J. X.; Kurth-Nelson, Z.; Tirumala,
D.; Soyer, H.; Leibo, J. Z.; Munos, R.; Blundell, C.; Ku-
maran, D.; and Botvinick, M. 2016. Learning to reinforce-
ment learn. arXiv preprint arXiv:1611.05763.

[Yu 2016] Yu, D. 2016. Spelunky. Boss Fight Books.
[Zhang et al. 2018] Zhang, C.; Vinyals, O.; Munos, R.; and
Bengio, S. 2018. A study on overfitting in deep reinforce-
ment learning. arXiv preprint arXiv:1804.06893.


	Introduction
	Obstacle Tower Environment
	Procedural Generation of Floors
	Evaluation Criteria
	Value as a Research Benchmark

	Preliminary Results
	Human Performance
	Agent Performance

	Discussion
	Potential Areas of Research
	Future Extensions
	Conclusion

	Acknowledgments

