
EPISODIC CURIOSITY THROUGH REACHABILITY

Nikolay Savinov∗1 Anton Raichuk∗1 Raphaël Marinier∗1 Damien Vincent∗1

Marc Pollefeys 3 Timothy Lillicrap 2 Sylvain Gelly 1

1Google Brain, 2DeepMind, 3ETH Zürich

ABSTRACT

Rewards are sparse in the real world and most today’s reinforcement learning al-
gorithms struggle with such sparsity. One solution to this problem is to allow the
agent to create rewards for itself — thus making rewards dense and more suitable
for learning. In particular, inspired by curious behaviour in animals, observing
something novel could be rewarded with a bonus. Such bonus is summed up with
the real task reward — making it possible for RL algorithms to learn from the
combined reward. We propose a new curiosity method which uses episodic mem-
ory to form the novelty bonus. To determine the bonus, the current observation
is compared with the observations in memory. Crucially, the comparison is done
based on how many environment steps it takes to reach the current observation
from those in memory — which incorporates rich information about environment
dynamics. This allows us to overcome the known “couch-potato” issues of prior
work — when the agent finds a way to instantly gratify itself by exploiting actions
which lead to unpredictable consequences. We test our approach in visually rich
3D environments in VizDoom and DMLab. In VizDoom, our agent learns to suc-
cessfully navigate to a distant goal at least 2 times faster than the state-of-the-art
curiosity method ICM. In DMLab, our agent generalizes well to new procedurally
generated levels of the game — reaching the goal at least 2 times more frequently
than ICM on test mazes with very sparse reward.

1 INTRODUCTION

Many real-world tasks have sparse rewards. For example, animals searching for food may need to go
many miles without any reward from the environment. Standard reinforcement learning algorithms
struggle with such tasks because of reliance on simple action entropy maximization as a source of
exploration behaviour.

Multiple approaches were proposed to achieve better explorative policies. One way is to give a
reward bonus which facilitates exploration by rewarding novel observations. The reward bonus
is summed up with the original task reward and optimized by standard RL algorithms. Such an
approach is motivated by neuroscience studies of animals: an animal has an ability to reward itself
for something novel – the mechanism biologically built into its dopamine release system. How
exactly this bonus is formed remains an open question.

Many modern curiosity formulations aim at maximizing “surprise” — inability to predict the future.
This approach makes perfect sense but, in fact, is far from perfect. To show why, let us consider a
thought experiment. Imagine an agent is put into a 3D maze. There is a precious goal somewhere
in the maze which would give a large reward. Now, the agent is also given a remote control to a TV
and can switch the channels. Every switch shows a random image (say, from a fixed set of images).
The curiosity formulations which optimize surprise would rejoice because the result of the channel
switching action is unpredictable. The agent would stay in front of the TV forever — instead of
looking for a goal in the environment (this was indeed observed in (Burda et al., 2018)). So, should
we call the channel switching behaviour curious? Maybe, but it is unproductive for the original
sparse-reward goal-reaching task. What would be a definition of curiosity which does not suffer
from such “couch-potato” behaviour?

∗Shared first authorship.

1

ar
X

iv
:1

81
0.

02
27

4v
1

 [
cs

.L
G

]
 4

 O
ct

 2
01

8

Observations
in memory

Reachable from memory
in ≤ k steps (not novel)

Far from memory –
takes > k steps to reach

(novel)

Figure 1: We define novelty through reach-
ability. The nodes in the graph are observa-
tions, the edges — possible transitions. The
blue nodes are already in memory, the green
nodes are reachable from the memory within
k = 2 steps (not novel), the orange nodes
are further away — take more than k steps
to reach (novel). In practice, the full possible
transition graph is not available, so we train
a neural network approximator to predict if
the distance in steps between observations is
larger or smaller than k.

We propose a new curiosity definition based on the following intuition. If the agent knew the ob-
servation after changing a TV channel is only one step away from the observation before doing that
— it probably would not be so interesting to change the channel in the first place (too easy). This
intuition can be formalized as giving a reward only for those observations which take some effort to
reach (outside the already explored part of the environment). The effort is measured in the number of
environment steps. To estimate it we train a neural network approximator: given two observations,
it would predict how many steps separate them. The concept of novelty via reachability is illustrated
in Figure 1. To make the description above practically implementable, there is still one piece miss-
ing though. For determining the novelty of the current observation, we need to keep track of what
was already explored in the environment. A natural candidate for that purpose would be episodic
memory: it stores instances of the past which makes it easy to apply the reachability approximator
on pairs of current and past observations.

Our method works as follows. The agent starts with an empty memory at the beginning of the
episode and at every step compares the current observation with the observations in memory to
determine novelty. If the current observation is indeed novel — takes more steps to reach from
observations in memory than a threshold — the agent rewards itself with a bonus and adds the
current observation to the episodic memory. The process continues until the end of the episode,
when the memory is wiped clean.

We benchmark our method on a range of tasks from visually rich 3D environments VizDoom and
DMLab. We conduct the comparison with other methods — including the state-of-the-art curiosity
method ICM (Pathak et al., 2017) — under the same budget of environment interactions. First, we
use the VizDoom environments from prior work to establish that our re-implementation of the ICM
baseline is correct — and also demonstrate at least 2 times faster convergence of our method with
respect to the baseline. Second, in the randomized procedurally generated environments from DM-
Lab our method turns out to be more robust to spurious behaviours than the method ICM: while the
baseline learns a persistent firing behaviour in navigational tasks (thus creating interesting pictures
for itself), our method learns a reasonable explorative behaviour. In terms of quantitative evaluation,
our method reaches the goal at least 2 times more often in the procedurally generated test levels in
DMLab with a very sparse reward. Third, when comparing the behaviour of the agent in the com-
plete absence of rewards, our method covers at least 4 times more area (measured in discrete (x, y)
coordinate cells) than the baseline ICM. Finally, we demonstrate that our curiosity bonus does not
significantly deteriorate performance of the plain PPO algorithm (Schulman et al., 2017) in two tasks
with dense reward in DMLab. The implementation of our method will be made publicly available.

2 EPISODIC CURIOSITY

We consider an agent which interacts with an environment. The interactions happen at discrete time
steps over the episodes of limited duration T . At each time step t, the environment provides the agent
with an observation ot from the observational space O (we consider images), samples an action at
from a set of actions A using a probabilistic policy π(ot) and receives a scalar reward rt ∈ R
together with the new observation ot+1 and an end-of-episode indicator. The goal of the agent is to
optimize the expectation of the discounted sum of rewards during the episode S =

∑
t γ

trt.

2

Reachability network

Comparator
network

Embedding
network

o1

o2

o3
o4

o5

o6

o7

o8

positive

negative

a1

a2
a3 a4

a5

a6

a7

Figure 2: Left: siamese architecture of reachability (R) network. Right: R-network is trained based
on a sequence of observations that the agent encounters while acting. The temporally close (within
threshold) pairs of observations are positive examples, while temporally far ones — negatives.

In this work we primarily focus on the tasks where rewards rt are sparse — that is, zero for most of
the time steps t. Under such conditions commonly used RL algorithms (e.g., PPO Schulman et al.
(2017)) do not work well. We further introduce an episodic curiosity (EC) module which alleviates
this problem. The purpose of this module is to produce a reward bonus bt which is further summed
up with the task reward rt to give an augmented reward r̂t = rt + bt. The augmented reward has a
nice property from the RL point of view — it is a dense reward. Learning with such reward is faster,
more stable and often leads to better final performance in terms of the cumulative task reward S.

In the following section we describe the key components of our episodic curiosity module.

2.1 EPISODIC CURIOSITY MODULE

The episodic curiosity (EC) module takes the current observation o as input and produces a reward
bonus b. The module consists of both parametric and non-parametric components. There are two
parametric components: an embedding network E : O → Rn and a comparator network C :
Rn×Rn → [0, 1]. Those parametric components are trained together to predict reachability as parts
of the reachability network — shown in Figure 2. There are also two non-parametric components:
an episodic memory buffer M and a reward bonus estimation function B. The high-level overview
of the system is shown in Figure 3. Next, we give a detailed explanation of all the components.

Embedding and comparator networks. Both networks are designed to function jointly for estimat-
ing within-k-step-reachability of one observation oi from another observation oj as parts of a reach-
ability network R(oi,oj) = C(E(oi), E(oj)). This is a siamese architecture similar to (Zagoruyko
& Komodakis, 2015). The architecture is shown in Figure 2. R-network is a classifier trained with a
logistic regression loss: it predicts values close to 0 if probability of two observations being reach-
able from one another in k steps is low, and values close to 1 when this probability is high. Inside the
episodic curiosity the two networks are used separately to save up both computation and memory.

Episodic memory. The episodic memory buffer M stores embeddings of past observations from
the current episode, computed with the embedding network E. The memory buffer has a limited
capacity K to avoid memory and performance issues. At every step, the embedding of the current
observation might be added to the memory. What to do when the capacity is exceeded? One solution
we found working well in practice is to substitute a random element in memory with the current
element. This way there are still more fresh elements in memory than older ones, but the older
elements are not totally neglected.

Reward bonus estimation module. The purpose of this module is to check for reachable obser-
vations in memory and if none are found — assign larger reward bonus to the current time step.
The check is done by comparing embeddings in memory to the current embedding via comparator
network. Essentially, this check insures that no observation in memory can be reached by taking
only a few actions from the current state — our characterization of novelty.

3

Current
observation

Current
embedding

Memory buffer

Embedding
network

Reachability
buffer

Reward
bonus

estimation
module

Reward
bonus

Append to memory if large curiosity reward

Comparator
network

Figure 3: The use of episodic curiosity (EC) module for reward bonus computation. The module
take a current observation as input and computes a reward bonus which is higher for novel observa-
tions. This bonus is later summed up with the task reward and used for training an RL agent.

2.2 BONUS COMPUTATION ALGORITHM.

At every time step, the current observation o goes through the embedding network producing the
embedding vector e = E(o). This embedding vector is compared with the stored embeddings in
the memory buffer M =

〈
e1, . . . , e|M|

〉
via the comparator network C where |M| is the current

number of elements in memory. This comparator network fills the reachability buffer with values

ci = C(ei, e), i = 1, |M|. (1)

Then the similarity score between the memory buffer and the current embedding is computed from
the reachability buffer as (with a slight abuse of notation)

C(M, e) = F
(
c1, . . . , c|M|

)
∈ [0, 1]. (2)

where the aggregation function F is a hyperparameter of our method. Theoretically, F = max
would be a good choice, however, in practice it is prone to outliers coming from the parametric
embedding and comparator networks. Empirically, we found that 90-th percentile works well as a
robust substitute to maximum.

As a curiosity bonus, we take

b = B(M, e) = α(β − C(M, e)), (3)

where α ∈ R+ and β ∈ R are hyperparameters of our method. We found that in practice β = 0.5
works well — making b belong to the range [−α2 ,

α
2]. The value of α depends on the scale of task

rewards — we will discuss how to select it in the experimental section.

After the bonus computation, the observation embedding is added to memory if the bonus b is
larger than a novelty threshold bnovelty. This check is necessary for the following reason. If every
observation embedding is added to the memory buffer, the observation from the current step will
always be reachable from the previous step. Thus, the reward would never be granted. The threshold
bnovelty induces a discretization in the embedding space. Intuitively, this makes sense: only “distinct
enough” memories are stored. As a side benefit, the memory buffer stores information with much
less redundancy. We found that in practice bnovelty = 0 works well.

2.3 REACHABILITY NETWORK TRAINING

If the full transition graph in Figure 1 was available, there would be no need of a reachability net-
work and the novelty could be computed analytically through the shortest-path algorithm. However,
normally we have access only to the sequence of observations which the agent receives while acting.
Fortunately, as suggested by (Savinov et al., 2018), even a simple observation sequence graph could
still be used for training a reasonable approximator to the real step-distance. This procedure is illus-
trated in Figure 2. This procedure takes as input a sequence of observations o1, . . . ,oN and forms
pairs from those observations. The pairs (oi,oj) where |i− j| ≤ k are taken as positive (reachable)
examples while the pairs with |i − j| > γk become negative examples. The hyperparameter γ is
necessary to create a gap between positive and negative examples. In the end, the network is trained
with logistic regression loss to output the probability of the positive (reachable) class.

4

(a) (b) (c) (d)

Figure 4: Examples of tasks considered in our experiments: (a) VizDoom static maze goal reaching,
(b) DMLab randomized maze goal reaching, (c) DMLab key-door puzzle, (d) DMLab collect good
objects / avoid bad objects.

We generally follow the training protocol proposed by (Savinov et al., 2018). This training is in-
spired by “motion babbling“ behaviour children perform during the first months of their life, while
laying in the cradle. We put the agent into exactly the same conditions where it will be eventually
tested: same episode duration and same action set. The agent takes random actions from a discrete
action set with equal probabilities. Given the environment interaction budget (2.5M 4-repeated steps
in DMLab, 300K 4-repeated steps in VizDoom), the agent fills in the replay buffer with observations
coming from its interactions with the environment, and forms training pairs by sampling from this
replay buffer randomly. We provide the details of R-network training in the supplementary material.

3 EXPERIMENTAL SETUP

We test our method in multiple environments from VizDoom (Kempka et al., 2016) and DM-
Lab (Beattie et al., 2016). The experiments in VizDoom allow us to verify that our re-implementation
of the previous state-of-the-art curiosity method ICM (Pathak et al., 2017) is correct. The experi-
ments in DMLab allow us to extensively test the generalization of our method as well as baselines
— DMLab provides convenient procedural level generation capabilities which allows us to train and
test RL methods on hundreds of levels. The examples of tasks are shown in Figure 4.

Environments. Both VizDoom and DMLab environments provide rich maze-like 3D environments.
The observations are given to the agent in the form of images. For VizDoom, we use 84 × 84
grayscale images as input. For DMLab, we use 84 × 84 RGB images as input. The agent operates
with a discrete action set which comprises different navigational actions. For VizDoom, the standard
action set consists of 3 actions: move forward, turn left/right. For DMLab, it consists of 9 actions:
move forward/backward, turn left/right, strafe left/right, turn left/right+move forward, fire. For both
VizDoom and DMLab we use all actions with the repeat of 4, as typical in the prior work. We only
use RGB input of the provided RGBD observations and remove all head-on display information from
the screen, leaving only the plain first-person view images of the maze. The rewards and episode
durations differ between particular environments and will be further specified in the corresponding
experimental sections.

Basic RL algorithm. We choose the commonly used PPO algorithm from the open-source imple-
mentation1 as our basic RL algorithm. The policy and value functions are represented as CNNs to
reduce number of hyperparameters — LSTMs are harder to tune and such tuning is orthogonal to the
contribution of the paper. We apply PPO to the sum of the task reward and the bonus reward coming
from specific curiosity algorithms. The hyperparameters of the PPO algorithm are given in the sup-
plementary material. We use only two sets of hyperparameters: one for all VizDoom environments
and the other one for all DMLab environments.

Baseline methods. The simplest baseline for our approach is just the basic RL algorithm applied
to the task reward. As suggested by the prior work and our experiments, this is a relatively weak
baseline in the tasks where reward is sparse.

As the second baseline, we take the state-of-the-art curiosity method ICM (Pathak et al., 2017).
As follows from the results in (Pathak et al., 2017; Fu et al., 2017), ICM is superior to methods

1https://github.com/openai/baselines

5

https://github.com/openai/baselines

(a) (b) (c)

Figure 5: Examples of maze layouts considered in our experiments: (a) VizDoom static maze goal
reaching, (b) DMLab randomized maze goal reaching, (c) DMLab randomized maze goal reaching
with doors.

VIME (Houthooft et al., 2016), #Exploration (Tang et al., 2017) and EX2 (Fu et al., 2017) on the
curiosity tasks in visually rich 3D environments.

Finally, as a sanity check, we introduce a novel baseline method which we call Grid Oracle. Since
we can access current (x, y) coordinates of the agent in all environments, we are able to directly
discretize the world in 2D cells and reward the agent for visiting as many cells as possible during the
episode (the reward bonus is proportional to the number of cells visited). At the end of the episode,
cell visit counts are zeroed. The reader should keep in mind that this baseline uses privileged in-
formation not available to other methods (including our own method EC). While this privileged
information is not guaranteed to lead to success in any particular RL task, we do observe this base-
line to perform strongly in many tasks, especially in complicated DMLab environments. The Grid
Oracle baseline has two hyperparameters: the weight for combining Grid Oracle reward with the
task reward and the cell size.

Hyperparameter tuning. As DMLab environments are procedurally generated, we perform tuning
on the validation set, disjoint with the training and test sets. The tuning is done on one of the environ-
ments and then the same hyperparameters are re-used for all other environments. VizDoom environ-
ments are not procedurally generated, so there is no trivial way to have proper training/validation/test
splits — so we tune on the same environment (as typical in the prior RL work for the environments
without splits). When tuning, we consider the mean final reward of 10 training runs with the same
set of hyperparameters as the objective — thus we do not perform any seed tuning. All hyperpa-
rameter values are listed in the supplementary material. Note that although bonus scalar α depends
on the range of task rewards, the environments in VizDoom and DMLab have similar ranges within
each platform — so our approach with re-using α for multiple environments works.

4 EXPERIMENTS

In this section, we describe the specific tasks we are solving and experimental results for all consid-
ered methods on those tasks. There are 4 methods to report: PPO, PPO + ICM, PPO + Grid Oracle
and PPO + EC (our method). First, we test static-maze goal reaching in VizDoom environments from
prior work to verify that our baseline re-implementation is correct. Second, we test the goal-reaching
behaviour in procedurally generated mazes in DMLab. Third, we train no-reward (pure curiosity)
maze exploration on the levels from DMLab and report Grid Oracle reward as an approximate mea-
sure of the maze coverage. Finally, we demonstrate that our curiosity bonus does not significantly
deteriorate performance in two dense reward tasks in DMLab. All the experiments were conducted
under the same environment interaction budget for all methods (R-network pre-training is included
in this budget). The videos of all trained agents in all environments are available online2.

For additional experiments we refer the reader to the supplementary material: there we show that
R-network can successfully generalize between environments, demonstrate stability of our method
to hyperparameters and present an ablation study.

6

Dense Sparse Very Sparse

0 1 2 3 4 5 6
Number of training steps (in millions)

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

wa
rd

s

0 1 2 3 4 5 6
Number of training steps (in millions)

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

wa
rd

s

0 1 2 3 4 5 6
Number of training steps (in millions)

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

wa
rd

s

PPO
PPO + ICM
Ours

Figure 6: Task reward as a function of training step for VizDoom tasks. Higher is better. We shift
the curves for our method by the number of environment steps used to train R-network — so the
comparison is fair. We run every method with a repeat of 3 (same as in prior work (Pathak et al.,
2017)) and show all runs. No seed tuning is performed.

4.1 STATIC MAZE GOAL REACHING.

The goal of this experiment is to verify our re-implementation of the baseline method is correct. We
use the MyWayHome task from VizDoom. The agent has to reach the goal in a static 3D maze in
the time limit of 525 4-repeated steps (equivalent to 1 minute). It only gets a reward of +1 when it
reaches the goal (episode ends at that moment), the rest of the time the reward is zero.

The task has three sub-tasks (following the setup in (Pathak et al., 2017)): “Dense”, “Sparse” and
“Very Sparse”. The layout of the maze is demonstrated in Figure 5(c). The goal is always at the
same room but the starting points are different in those sub-tasks. For the “Dense” subtask, the
agent starts in one of the random locations in the maze, some of which are close to the goal. In
this sub-task, the reward is relatively dense (hence the name): the agent is likely to bump into the
goal by a short random walk. Thus, this is an easy task even for standard RL methods. The other
two sub-tasks are harder: the agent starts in a medium-distant room from the goal (“Sparse”) or in
a very distant room (“Very Sparse”). Those tasks are hard for standard RL algorithms because the
probability of bumping into a rewarding state by a random walk is very low.

The training curves are shown in Figure 6. By analysing them, we draw a few conclusions. First,
our re-implementation of the ICM baseline is correct and the results are in line with those pub-
lished in (Pathak et al., 2017). Second, our method works on-par with the ICM baseline in terms
of final performance, quickly reaching 100% success rate in all three sub-tasks. Finally, in terms
of convergence speed our algorithm is significantly faster than the state-of-the-art method ICM —
our method reaches 100% success rate at least 2 times faster. Note that to make the comparison of
the training speed fair, we shift our training curves by the environment interaction budget used for
training R-network.

4.2 PROCEDURALLY GENERATED RANDOM MAZE GOAL REACHING.

In this experiment we aim to evaluate maze goal reaching task generalization on a large scale. We
train on hundreds of levels and then test also on hundreds of hold-out levels. We use “Explore
Goal Locations Large” (we will denote it “Sparse”) and “Explore Obstructed Goals Large” (we
will denote it “Sparse + Doors”) levels in the DMLab simulator. In those levels, the agent starts in
a random location in a randomly generated maze (both layout and textures are randomized at the
beginning of the episode). Within the time limit of 1800 4-repeated steps (equivalent to 2 minutes),
the agent has to reach the goal as many times as possible. Every time it reaches a goal, it is re-
spawned into another random location in the maze and has to go to the goal again. Every time the
goal is reached, the agent gets a reward +10, the rest of the time the reward is zero. The second
level is a variation of the first one with doors which make the paths in the maze longer. The layouts
of the levels are demonstrated in Figure 5(b,c).

We found out that the standard task “Sparse” is actually relatively easy even for the plain PPO
algorithm. The reason is that the agent starting point and the goal are sampled on the map inde-
pendently of each other — and sometimes both happen to be in the same room which simplifies the

2https://sites.google.com/view/episodic-curiosity

7

https://sites.google.com/view/episodic-curiosity

Sparse Very Sparse Sparse + Doors

No Reward No Reward - Fire Dense 1

Figure 7: Reward as a function of training step for DMLab tasks. Higher is better. We shift
the curves for our method by the number of environment steps used to train R-network — so the
comparison is fair. We run every method 10 times and show all runs. No seed tuning is performed.

task. To test the limits of the algorithms, we create a gap between the starting point and the goal
which eliminates same-room initialization. We report the results for both the original task “Sparse”
and its harder version “Very Sparse”. Thus, there are overall three tasks considered in this section:
“Sparse”, “Very Sparse” and “Sparse + Doors”.

The results demonstrate that our method can reasonably adapt to ever-changing layouts and textures
— see Table 1 and training curves in Figure 7. We outperform the baseline method ICM in all
three environments using the same environment interaction budget of 20M 4-repeated steps. The
environment “Sparse” is relatively easy and all methods work reasonably. In the “Very Sparse” and
“Sparse + Doors” settings our advantage with respect to PPO and ICM is more clear. On those levels,
the visual inspection of the ICM learnt behaviour reveals an important property of this method: it is
confused by the firing action and learns to entertain itself by firing until it runs out of ammunition. A
similar finding was reported in a concurrent work (Burda et al., 2018): the agent was given an action
which switched the content on a TV screen in a maze, along with the movement actions. Instead of
moving, the agent learns to switch channels forever. While one might intuitively accept such “couch-
potato” behaviour in intelligent creatures, it does not need to be a consequence of curious behaviour.
In particular, we are not observing such dramatic firing behaviour for our curiosity formulation:
according to Figure 1, an observation after firing is still one step away from the one before firing,
so it is not novel (note that firing still could happen in practice because of the entropy term in PPO).
Thus, our formulation turns out to be more robust than ICM’s prediction error in this scenario. Note
that we do not specifically look for an action set which breaks the baseline — just use the standard
one for DMLab, in line with the prior work (e.g., (Espeholt et al., 2018)).

The result of this experiment suggests to look more into how methods behave in extremely-sparse
reward scenarios. The limiting case would be no reward at all — we consider it in the next section.

4.3 NO REWARD/AREA COVERAGE.

This experiment aims to quantitatively establish how good our method is in the scenario when no
task reward is given. One might question why this scenario is interesting — however, before the
task reward is found for the first time, the agent lives in the no-reward world. How it behaves in this
case will also determine how likely it is to stumble into the task reward in the first place.

We use one of the DMLab levels — “Sparse” from the previous experiment. We modify the task
to eliminate the reward and name the new task “No Reward”. To quantify success in this task,
we report the reward coming from Grid Oracle for all compared methods. This reward provides a
discrete approximation to the area covered by the agent while exploring.

8

Table 1: Reward in DMLab tasks (mean ± std) for all compared methods. Higher is better. We
report Grid Oracle reward in tasks with no reward. The results for our method are reported from less
training steps to account for R-network pre-training. The Grid Oracle method is given for reference
— it uses privileged information unavailable to other methods. No seed tuning is performed.

Method Sparse Very Sparse Sparse+Doors No Reward No Reward - Fire Dense 1 Dense 2

PPO 27.0± 5.1 8.6± 4.3 1.5± 0.1 191± 12 217± 19 22.8± 0.5 9.41± 0.02

PPO + ICM 23.8± 2.8 11.2± 3.9 2.7± 0.2 72± 2 87± 3 20.9± 0.6 9.39± 0.02

PPO + EC (ours) 26.2± 1.9 24.7± 2.2 8.5± 0.6 475± 8 492± 10 19.9± 0.7 9.53± 0.03

PPO + Grid Oracle 56.7± 1.3 54.3± 1.2 29.4± 0.5 796± 2 795± 3 20.9± 0.6 8.97± 0.04

The training curves are shown in Figure 7 and the final test results in Table 1. The result of this
experiment is that our method and Grid Oracle both work, while the ICM baseline is not working
— and the qualitative difference in behaviour is bigger than in the previous experiments. As can be
seen from the training curves, after a temporary increase, ICM quality actually decreases over time,
rendering a sharp disagreement between the prediction-error-based bonus and the area coverage
metric. By looking at the video2, we observe that the firing behaviour of ICM becomes even more
prominent, while our method still shows reasonable exploration.

Finally, we try to find out if the ICM baseline behaviour above is due to the firing action only.
Could it learn exploration of randomized mazes if the Fire action is excluded from the actions set?
For that purpose, we create a new version of the task — we call it “No Reward - Fire”. This task
demonstrates qualitatively similar results to the one with the full action set — see Table 1. By
looking at the videos2, we hypothesise that the agent can most significantly change its current view
when it is close to the wall — thus increasing one-step prediction error — so it tends to get stuck
near “interesting” diverse textures on the walls.

The results suggest that in an environment completely without reward, the ICM method will exhaust
its curiosity very quickly — passing through a sharp peak and then degrading into undesired be-
haviour. This observation raises concerns: what if ICM passes the peak before it reaches the first
task reward in the cases of real tasks? Supposedly, it would require careful tuning per-game. Fur-
thermore, in some cases, it would take a lot of time with a good exploration behaviour to reach the
first reward, which would require to stay at the top performance for longer — which is problematic
for the ICM method but still possible for our method.

4.4 DENSE REWARD TASKS.

A desirable property of a good curiosity bonus is to avoid hurting performance in dense-reward tasks
(in addition to improving performance for sparse-reward tasks). We test this scenario in two levels
in the DMLab simulator: “Rooms Keys Doors Puzzle” (which we denote “Dense 1”) and “Rooms
Collect Good Objects Train” (which we denote “Dense 2”). In the first task, the agent has to collect
keys and reach the goal object behind a few doors openable by those keys. The rewards in this task
are rather dense (key collection/door opening is rewarded). In the second task the agent has to collect
good objects (give positive reward) and avoid bad objects (give negative reward). The episode lasts
for 900 4-repeated steps (equivalent to 1 minute) in both tasks.

The results show that our method indeed does not significantly deteriorate performance of plain PPO
in those dense-reward tasks — see Table 1. The training curves for “Dense 1” are shown in Figure 7
and for “Dense 2” — in the supplementary material. Note that we use the same bonus weight in
this task as in other DMLab tasks before. All methods work similarly besides the Grid Oracle in the
“Dense 2” task — which performs slightly worse. Video inspection2 reveals that Grid Oracle — the
only method which has ground-truth knowledge about area it covers during training — sometimes
runs around excessively and occasionally fails to collect all good objects.

9

5 DISCUSSION

Our method is at the intersection of multiple topics: curiosity, episodic memory and temporal dis-
tance prediction. In the following, we discuss the relation to the prior work on those topics.

Curiosity in visually rich 3D environments. Recently, a few works demonstrated the possibility
to learn exploration behaviour in visually rich 3D environments like DMLab (Beattie et al., 2016)
and VizDoom (Kempka et al., 2016). (Pathak et al., 2017) trains a predictor for the embedding
of the next observation and if the reality is significantly different from the prediction — rewards
the agent. In that work, the embedding is trained with the purpose to be a good embedding for
predicting action taken between observations — unlike an earlier work (Stadie et al., 2015) which
obtains an embedding from an autoencoder. It was later shown by (Burda et al., 2018) that the
perceptive prediction approach has a downside — the agent could become a “couch-potato” if given
an action to switch TV channels. This observation is confirmed in our experiments by observing
a persistent firing behaviour of the ICM baseline in the navigational tasks with very sparse or no
reward. By contrast, our method does not show this behaviour. Another work (Fu et al., 2017) trains
a temporal distance predictor and then uses this predictor to establish novelty: if the observation is
easy to classify versus previous observations, it is novel. This method does not use episodic memory,
however, and the predictor is used in way which is different from our work.

General curiosity. Curiosity-based exploration for RL has been extensively studied in the litera-
ture. For an overview, we refer the reader to the works (Oudeyer & Kaplan, 2009; Oudeyer et al.,
2007). The most common practical approaches could be divided into three branches: prediction-
error-based, count-based and goal-generation-based. Since the prediction-based approaches were
discussed before, in the following we focus on the latter two branches.

The count-based approach suggests to keep visit counts for observations and concentrate on visiting
states which has been rarely visited before — which bears distant similarity to how we use episodic
memory. This idea is natural for discrete observation spaces and has solid theoretical foundations.
Its extension to continuous observation spaces is non-trivial, however. The notable step in this
direction was taken by works (Bellemare et al., 2016; Ostrovski et al., 2017) which introduce a
trained observation density model which is later converted to a function behaving similarly to counts.
The way conversion is done has some similarity to prediction-error-based approaches: it is the
difference of the density in the example before and after training of this example which is converted
to count. The experiments in the original works operate on Atari games (Bellemare et al., 2013)
and were not benchmarked on visually rich 3D environments. Another approach (Tang et al., 2017)
discretises the continuous observation space by hashing and then uses the count-based approach in
this discretised space. This method is appealing in its simplicity, however, the experiments in (Pathak
et al., 2017; Fu et al., 2017) show that it does not perform well in visually rich 3D environments.

Finally, our concept of novelty through reachability is reminiscent of generating the goals which are
reachable but not too easy — a well-studied topic in the prior work. The work (Held et al., 2017)
uses a GAN to differentiate what is easy to reach from what is not and then generate goals at the
boundary. Another work (Baranes & Oudeyer, 2013) defines new goals according to the expected
progress the agent will make if it learns to solve the associated task. The recent work (Péré et al.,
2018) learns an embedding for the goal space and then samples increasingly difficult goals from that
space. In a spirit similar to those works, our method implicitly defines goals that are at least some
fixed number of steps away by using the reachability network. However, our method is easier to
implement than other goal-generation methods and quite general.

Episodic memory. Two recent works (Blundell et al., 2016; Pritzel et al., 2017) were inspired by the
ideas of episodic memory in animals and proposed an approach to learn the functioning of episodic
memory along with the task for which this memory is applied. Those works are more focused on
repeating successful strategies than on exploring environments — and are not designed to work in
the absence of task rewards.

Temporal distance prediction. The idea to predict the distance between video frames has been
studied extensively. Usually this prediction is an auxiliary task for solving another problem. (Ser-

10

manet et al., 2017) trains an embedding such that closer in time frames are also closer in the embed-
ding space. Multiple works (Fu et al., 2017; Savinov et al., 2018; Aytar et al., 2018) train a binary
classifier for predicting if the distance in time between frames is within a certain threshold or not.
While (Sermanet et al., 2017; Aytar et al., 2018) use only the embedding for their algorithms, (Fu
et al., 2017; Savinov et al., 2018) also use the classifier trained together with the embedding. As
mentioned earlier, (Fu et al., 2017) uses this classifier for density estimation instead of compari-
son to episodic memory. (Savinov et al., 2018) does compare to the episodic memory buffer but
solves a different task — given an already provided exploration video, navigate to a goal — which
is complementary to the task in our work.

6 CONCLUSION

In this work we propose a new model of curiosity based on episodic memory and the ideas of reach-
ability. This allows us to overcome the known “couch-potato” issues of prior work and outperform
the previous curiosity state-of-the-art method ICM in visually rich 3D environments. In the future,
we want to make policy aware of memory not only in terms of receiving reward, but also in terms of
acting. Can we use memory content retrieved based on reachability to guide exploration behaviour
in the test time? This could open opportunities to learn exploration in new tasks in a few-shot style
— which is currently a big scientific challenge.

ACKNOWLEDGMENTS

We would like to thank Olivier Pietquin, Carlos Riquelme, Charles Blundell and Sergey Levine for
the valuable discussions about our work.

REFERENCES

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas. Playing hard
exploration games by watching youtube. arXiv preprint arXiv:1805.11592, 2018.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler, Andrew
Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801,
2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems,
pp. 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo, Jack Rae,
Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint arXiv:1606.04460, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros. Large-scale
study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 2577–2587, 2017.

David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal generation for reinforcement
learning agents. arXiv preprint arXiv:1705.06366, 2017.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. In Advances in Neural Information Processing Systems, pp. 1109–
1117, 2016.

11

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom: A
doom-based ai research platform for visual reinforcement learning. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, pp. 1–8. IEEE, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration with
neural density models. arXiv preprint arXiv:1703.01310, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational ap-
proaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frederic Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (ICML), volume 2017, 2017.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Unsupervised learning of goal
spaces for intrinsically motivated goal exploration. arXiv preprint arXiv:1803.00781, 2018.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech, Oriol Vinyals, Demis Hassabis,
Daan Wierstra, and Charles Blundell. Neural episodic control. arXiv preprint arXiv:1703.01988, 2017.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for naviga-
tion. arXiv preprint arXiv:1803.00653, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and Sergey Levine.
Time-contrastive networks: Self-supervised learning from video. arXiv preprint arXiv:1704.06888, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip
DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 2753–2762, 2017.

Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361,
2015.

12

SUPPLEMENTARY MATERIAL

The supplementary material is organized as follows. First, we provide training details for R-network.
Second, we list hyperparameter values and the details of hyperparameter search for all methods.
Then we show experimental results which suggest that R-network can generalize between environ-
ments: we transfer one general R-network from all available DMLab30 levels to our tasks of interest
and also transfer R-networks between single environments. After that, we present the results from
a stability/ablation study which suggests our method is stable with respect to its most important hy-
perparameters and the components we used in the method are actually necessary for its performance
(and measure their influence). Finally, we provide the training curves for the “Dense 2” task in the
main text.

S1 REACHABILITY NETWORK TRAINING DETAILS

For training R-network, we use mini-batches of 64 observation pairs (matched within episodes).
The training is run for 50K mini-batch iterations for VizDoom and 200K mini-batch iterations for
DMLab. At the beginning of every pass through the buffer, we re-shuffle it. We use Adam optimizer
with learning rate 10−4. The R-network uses a siamese architecture with two branches (see Figure 2
in the main text), each branch is Resnet-18 with 512 outputs, with a fully-connected network applied
to the concatenated output of the branches. The fully-connected network has four hidden layers with
512 units, batch-normalization and ReLU is applied after each layer besides the last one, which is a
softmax layer. Observations are RGB-images with resolution 160× 120 pixels.

S2 HYPERPARAMETERS

The hyperparameters of different methods are given in Table S1 for VizDoom environment and in
Table S2 for DMLab environment. The hyperparameters for DMLab are tuned on the “Sparse”
environment for all methods — because all methods work reasonably on this environment (it is
unfair to tune a method on an environment where it fails and also unfair to tune different methods
on different environments). We use the PPO algorithm from the open-source implementation3. For
implementation convenience, we scale both the bonus and the task reward (with a single balancing
coefficient it would not be possible to turn off one of those rewards).

Table S1: Hyper-parameters used for VizDoom environment.

Plain PPO ICM Grid Oracle EC

learning rate 0.00025 0.00025 0.00025 0.00025
PPO entropy coefficient 0.01 0.01 0.01 0.01
Task reward scale 5.0 5.0 5.0 5.0
Curiosity bonus scale 0.0 0.01 1.0 1.0
ICM forward inverse ratio - 0.2 - -
ICM curiosity loss strength - 10 - -
EC memory size - - - 200

3 https://github.com/openai/baselines

13

https://github.com/openai/baselines

Table S2: Hyper-parameters used for DMLab environment.

Plain PPO ICM Grid Oracle EC

learning rate 0.00019 0.00025 0.00025 0.00025
PPO entropy coefficient 0.0011 0.0042 0.0066 0.0021
Task reward scale 1.0 1.0 1.0 1.0
Curiosity bonus scale 0.0 0.55 0.052 0.030
ICM forward inverse ratio - 0.96 - -
ICM curiosity loss strength - 64 - -
EC memory size - - - 200

S3 R-NETWORK GENERALIZATION STUDY

One of the promises of our approach is its potential ability to generalize between tasks. In this
section we verify if this promise holds.

S3.1 TRAINING R-NETWORK ON ALL DMLAB-30 TASKS

Could we train a universal R-network for all available levels — and then use this network for all
our tasks of interest? Since different games have different dynamics models, the notion of closely
reachable or far observations also changes from game to game. Can R-network successfully handle
this variability? Table S3 suggests that using a universal R-network slightly hurts the performance
compared to using a specialized R-network trained specifically for the task. However, it still defi-
nitely helps to get higher reward compared to using the plain PPO. The R-network is trained using
10M environment interactions equally split across all 30 DMLab-30 tasks.

Table S3: Reward on the tasks “No Reward” and “Very Sparse” using a universal R-network. Two
baselines (PPO and PPO + EC with a specialized R-network) are also provided.

Method No Reward Very Sparse

PPO 191 ± 12 8.6 ± 4.3
PPO + EC with specialized R-network 475 ± 8 24.7 ± 2.2

PPO + EC with universal R-network 348 ± 8 19.3 ± 1.0

S3.2 TRAINING R-NETWORK ON ONE LEVEL AND TESTING ON ANOTHER

This experiment is similar to the previous one but in a sense is more extreme. Instead of training on
all levels (including the levels of interest and other unrelated levels), can we train R-network on just
one task and use if for a different task? Table S4 suggests we can obtain reasonable performance
by transferring the R-network between similar enough environments. The performance is unsatis-
factory only in one case (using the R-network trained on “Dense 2”). Our hypothesis is that the
characteristics of the environments are sufficiently different in that case: single room versus maze,
static textures on the walls versus changing textures.

S4 STABILITY/ABLATION STUDY

The experiments are done both in “No Reward” and “Very Sparse” environments. The “No Reward”
environment is useful to avoid the situations where task reward would hide important behavioural
differences between different flavors of our method (this “hiding” effect can be easily observed for
different methods comparison in the dense reward tasks — but the influence of task reward still
remains even in sparser cases). As in the main text, for the “No Reward” task we report the Grid
Oracle reward as a discrete approximation to the area covered by the agent trajectories.

14

Table S4: Reward on the environments “No Reward” and “Very Sparse” (columns) when the R-
network is trained on different environments (rows). We provide a result with a matching R-network
for reference (bottom).

R-network training environment No Reward Very Sparse

Dense 1 320 ± 5 18.5 ± 1.4
Dense 2 43 ± 2 0.8 ± 0.5
Sparse + Doors 376 ± 7 16.2 ± 0.7

Matching environment 475 ± 8 24.7 ± 2.2

S4.1 POSITIVE EXAMPLE THRESHOLD IN R-NETWORK TRAINING

Training the R-network requires a threshold k to separate negative from positive pairs. The trained
policy implicitly depends on this threshold. Ideally, the policy performance should not be too sensi-
tive to this hyper-parameter. We conduct a study where the threshold is varied from 2 to 10 actions
(as in all experiments before, each action is repeated 4 times). Table S5 shows that the EC perfor-
mance is reasonably robust to the choice of this threshold.

Table S5: Reward in the “No Reward” and “Very Sparse“ tasks using different positive example
thresholds k when training the R-network.

Threshold k No Reward Very Sparse

2 378 ± 18 28.3 ± 1.6
3 395 ± 10 20.9 ± 1.6
4 412 ± 8 31.1 ± 1.2
5 475 ± 8 24.7 ± 2.2
7 451 ± 4 23.6 ± 1.0
10 455 ± 7 20.8 ± 0.8

S4.2 MEMORY SIZE IN EC MODULE

The EC-module relies on an explicit memory buffer to store the embeddings of past observations
and define novelty. One legitimate question is to study the impact of the size of this memory buffer
on the performance of the EC-module. As observed in table S6, the memory size has little impact
on the performance.

Table S6: Reward for different values of the memory size for the tasks “No Reward” and “Very
Sparse”.

Memory size No Reward Very Sparse

100 447 ± 6 19.4 ± 1.9
200 475 ± 8 24.7 ± 2.2
350 459 ± 6 23.5 ± 1.4
500 452 ± 6 23.8 ± 2.0

S4.3 ENVIRONMENT INTERACTION BUDGET FOR TRAINING R-NETWORK

The sample complexity of our EC method includes two parts: the sample complexity to train the R-
network and the sample complexity of the policy training. In the worst case – when the R-network
does not generalize across environments – the R-network has to be trained for each environment
and the total sample complexity is then the sum of the previous two sample complexities. It is then
crucial to see how many steps are needed to train R-network such that it can capture the notion of

15

reachability. R-network trained using a number of environment steps as low as 1M already gives
good performance, see Table S7.

Table S7: Reward of the policy trained on the “No Reward” and “Very Sparse“ tasks with an R-
network trained using a varying number of environment interactions (from 100K to 5M).

Interactions No Reward Very Sparse

100K 357 ± 18 12.2 ± 1.3
300K 335 ± 9 16.2 ± 0.7
1M 383 ± 13 18.6 ± 0.9
2.5M 475 ± 8 24.7 ± 2.2
5M 416 ± 5 20.7 ± 1.4

S4.4 IMPORTANCE OF TRAINING DIFFERENT PARTS OF R-NETWORK

The R-network is composed of an Embedding network and a Comparator network. How impor-
tant is each for the final performance of our method? To establish that, we conduct two experiments.
First, we fix the Embedding network at the random initialization and train only the Comparator. Sec-
ond, we substitute the Comparator network applied to embeddings e1, e2 with the sigmoid function
σ(eT1 e2) and train only the Embedding. According to the results in Table S8, we get a reasonable
performance with a random embedding: the results are still better than the plain PPO (but worse
than with the complete R-network). However, without the Comparator the quality drops below the
plain PPO.

This experiment leads us to two conclusions. First, training the Embedding network is desired but
not necessary for our method to work. Second, using the Comparator is essential and cannot be
omitted in the current setup. Apparently, predicting reachability requires fine-grained access to both
embeddings at the same time — and a simple comparison function does not work.

Table S8: Reward on the “No Reward” and “Very Sparse“ tasks using ablated versions of the R-
network.

Method No Reward Very Sparse

PPO 191 ± 12 8.6 ± 4.3
PPO + EC with complete R-network 475 ± 8 24.7 ± 2.2

PPO + EC with random Embedding 392 ± 12 16.2 ± 1.4
PPO + EC without Comparator network 48 ± 3 5.8 ± 2.4

S5 ADDITIONAL DMLab TRAINING CURVES

Figure S1: Reward as a function of training step
for the DMLab task “Dense 2”. Higher is better.
We shift the curves for our method by the number
of environment steps used to train R-network —
so the comparison between different methods is
fair. We run every method 10 times and show all
runs. No seed tuning is performed.

We show additional training curves from the main text experimental section in Figure S1.

16

	1 Introduction
	2 Episodic Curiosity
	2.1 Episodic Curiosity Module
	2.2 Bonus Computation Algorithm.
	2.3 Reachability Network Training

	3 Experimental Setup
	4 Experiments
	4.1 Static Maze Goal Reaching.
	4.2 Procedurally Generated Random Maze Goal Reaching.
	4.3 No Reward/Area Coverage.
	4.4 Dense Reward Tasks.
	5 Discussion
	6 Conclusion
	S1 Reachability Network Training Details
	S2 Hyperparameters
	S3 R-network generalization study
	S3.1 Training R-network on all DMLab-30 tasks
	S3.2 Training R-network on One Level and Testing on Another

	S4 Stability/ablation Study
	S4.1 Positive Example Threshold in R-network Training
	S4.2 Memory Size in EC module
	S4.3 Environment Interaction Budget for Training R-network
	S4.4 Importance of Training Different Parts of R-network
	S5 Additional DMLab Training Curves

