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Abstract

To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural
Information Processing Systems 7, MIT Press, Cambridge MA, 1995.

A straightforward approach to the curse of dimensionality in re-
inforcement learning and dynamic programming is to replace the
lookup table with a generalizing function approximator such as a neu-
ral net. Although this has been successful in the domain of backgam-
mon, there is no guarantee of convergence. In this paper, we show
that the combination of dynamic programming and function approx-
imation is not robust, and in even very benign cases, may produce
an entirely wrong policy. We then introduce Grow-Support, a new
algorithm which is safe from divergence yet can still reap the bene�ts
of successful generalization.

1 INTRODUCTION

Reinforcement learning|the problem of getting an agent to learn to act from sparse,
delayed rewards|has been advanced by techniques based on dynamic programming
(DP). These algorithms compute a value function which gives, for each state, the min-
imum possible long-term cost commencing in that state. For the high-dimensional
and continuous state spaces characteristic of real-world control tasks, a discrete repre-
sentation of the value function is intractable; some form of generalization is required.

A natural way to incorporate generalization into DP is to use a function approximator,
rather than a lookup table, to represent the value function. This approach, which
dates back to uses of Legendre polynomials in DP [Bellman et al., 1963], has recently
worked well on several dynamic control problems [Mahadevan and Connell, 1990, Lin,
1993] and succeeded spectacularly on the game of backgammon [Tesauro, 1992, Boyan,
1992]. On the other hand, many sensible implementations have been less successful
[Bradtke, 1993, Schraudolph et al., 1994]. Indeed, given the well-established success



on backgammon, the absence of similarly impressive results appearing for other games
is perhaps an indication that using function approximation in reinforcement learning
does not always work well.

In this paper, we demonstrate that the straightforward substitution of function ap-
proximators for lookup tables in DP is not robust and, even in very benign cases, may
diverge, resulting in an entirely wrong control policy. We then present Grow-Support,
a new algorithm designed to converge robustly. Grow-Support grows a collection of
states over which function approximation is stable. One-step backups based on Bell-
man error are not used; instead, values are assigned by performing \rollouts"|explicit
simulations with a greedy policy. We discuss potential computational advantages of
this method and demonstrate its success on some example problems for which the
conventional DP algorithm fails.

2 DISCRETE AND SMOOTH VALUE ITERATION

Many popular reinforcement learning algorithms, including Q-learning and TD(0),
are based on the dynamic programming algorithm known as value iteration [Watkins,
1989, Sutton, 1988, Barto et al., 1989], which for clarity we will call discrete value
iteration. Discrete value iteration takes as input a complete model of the world as a
Markov Decision Task, and computes the optimal value function J�:

J�(x) = the minimum possible sum of future costs starting from x

To assure that J� is well-de�ned, we assume here that costs are nonnegative and that
some absorbing goal state|with all future costs 0|is reachable from every state. For
simplicity we also assume that state transitions are deterministic. Note that J� and
the world model together specify a \greedy" policy which is optimal for the domain:

optimal action from state x = argmin
a2A

(Cost(x; a) + J�(Next-State(x; a)))

We now consider extending discrete value iteration to the continuous case: we replace
the lookup table over all states with a function approximator trained over a sample of
states. The smooth value iteration algorithm is given in the appendix. Convergence
is no longer guaranteed; we instead recognize four possible classes of behavior:

good convergence The function approximator accurately represents the interme-
diate value functions at each iteration (that is, after m iterations, the value
function correctly represents the cost of the cheapest m-step path), and suc-
cessfully converges to the optimal J� value function.

lucky convergence The function approximator does not accurately represent the
intermediate value functions at each iteration; nevertheless, the algorithm
manages to converge to a value function whose greedy policy is optimal.

bad convergence The algorithm converges, i.e. the target J-values for the N train-
ing points stop changing, but the resulting value function and policy are
poor.

divergence Worst of all: small �tter errors may become magni�ed from one iteration
to the next, resulting in a value function which never stops changing.

The hope is that the intermediate value functions will be smooth and we will achieve
\good convergence." Unfortunately, our experiments have generated all four of these
behaviors|and the divergent behavior occurs frequently, even for quite simple prob-
lems.



2.1 DIVERGENCE IN SMOOTH VALUE ITERATION

We have run simulations in a variety of domains|including a continuous gridworld,
a car-on-the-hill problem with nonlinear dynamics, and tic-tac-toe versus a stochas-
tic opponent|and using a variety of function approximators, including polynomial
regression, backpropagation, and local weighted regression. In our experiments, none
of these function approximators was immune from divergence.

The �rst set of results is from the 2-D continuous gridworld, described in Figure 1.
By quantizing the state space into a 100� 100 grid, we can compute J� with discrete
value iteration, as shown in Figure 2. The optimal value function is exactly linear:
J�(x; y) = 20� 10x� 10y.

Since J� is linear, one would hope smooth value iteration could converge to it with a
function approximator as simple as linear or quadratic regression. However, the in-
termediate value functions of Figure 2 are not smooth and cannot be �t accurately by
a low-order polynomial. Using linear regression on a sample of 256 randomly-chosen
states, smooth value iteration took over 500 iterations before \luckily" converging to
optimal. Quadratic regression, though it always produces a smaller �t error than lin-
ear regression, did not converge (Figure 3). The quadratic function, in trying to both
be at in the middle of state space and bend down toward 0 at the goal corner, must
compensate by underestimating the values at the corner opposite the goal. These
underestimates then enlarge on each iteration, as the one-step DP lookaheads erro-
neously indicate that points can lower their expected cost-to-go by stepping farther
away from the goal. The resulting policy is anti-optimal.
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Figure 1: In the continuous gridworld domain, the state is a point (x; y) 2 [0; 1]2. There are
four actions corresponding to short steps (length 0.05, cost 0.5) in each compass direction,
and the goal region is the upper right-hand corner. J�(x; y) is linear.
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Figure 2: Computation of J� by discrete value iteration



Iteration 17
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Figure 3: Divergence of smooth value iteration with quadratic regression (note z-axis).
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Figure 4: The 2-D continuous gridworld with puddles, its optimal value function, and a
diverging approximation of the value function by Local Weighted Regression (note z-axis).
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Figure 5: The car-on-the-hill domain. When the velocity is below a threshold, the car must
reverse up the left hill to gain enough speed to reach the goal, so J� is discontinuous.
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Figure 6: Divergence of smooth value iteration with backpropagation for car-on-the-hill. The
neural net, a 2-layer MLP with 80 hidden units, was trained for 2000 epochs per iteration.

It may seem as though the divergence of smooth value iteration shown above can be
attributed to the global nature of polynomial regression. In fact, when the domain
is made slightly less trivial, the same types of instabilities appear with even a highly



Table 1: Summary of convergence results: Smooth value iteration

Domain Linear Quadratic LWR Backprop
2-D gridworld lucky diverge good lucky
2-D puddle world | | diverge diverge
Car-on-the-hill | | good diverge

local memory-based function approximator such as local weighted regression (LWR)
[Cleveland and Delvin, 1988]. Figure 4 shows the continuous gridworld augmented
to include two oval \puddles" through which it is costly to step. Although LWR can
�t the corresponding J� function nearly perfectly, smooth value iteration with LWR
nonetheless reliably diverges. On another two-dimensional domain, the car-on-the-hill
(Figure 5), smooth value iteration with LWR did converge, but a neural net trained
by backpropagation did not (see Figure 6). Table 1 summarizes our results.

In light of such experiments, we conclude that the straightforward combination of
DP and function approximation is not robust. A general-purpose learning method
will require either using a function approximator constrained to be robust during DP
[Yee, 1992], or an algorithm which explicitly prevents divergence even in the face of
imperfect function approximation, such as the Grow-Support algorithm we present
in Section 3.

2.2 RELATED WORK

Theoretically, it is not surprising that inserting a smoothing process into a recursive
DP procedure can lead to trouble. In [Thrun and Schwartz, 1993] one case is analyzed
with the assumption that errors due to function approximation bias are independently
distributed. Another area of theoretical analysis concerns inadequately approximated
J� functions. In [Singh and Yee, 1994] and [Williams, 1993] bounds are derived for the
maximum reduction in optimality that can be produced by a given error in function
approximation. If a basis function approximator is used, then the reduction can be
large [Sabes, 1993]. These results assume generalization from a dataset containing
true optimal values; the true reinforcement learning scenario is even harder because
each iteration of DP requires its own function approximation.

3 THE GROW-SUPPORT ALGORITHM

The Grow-Support algorithm is designed to construct the optimal value function with
a generalizing function approximator while being robust and stable. It recognizes that
function approximators cannot always be relied upon to �t the intermediate value
functions produced by DP. Instead, it assumes only that the function approximator
can represent the �nal J� function accurately. The speci�c principles of Grow-Support
are these:

1. We maintain a \support" set of states whose �nal J� values have been com-
puted, starting with goal states, and growing this set out from the goal. The
�tter is trained only on these values, which we assume it is capable of �tting.

2. Instead of propagating values by one-step DP backups, we use simulations
with the current greedy policy, called \rollouts". They explicitly verify the
achievability of a state's cost-to-go estimate before adding that state to the



support. In a rollout, the J values are derived from costs of actual paths to the
goal, not from the values of the previous iteration's function approximation.
This prevents divergence.

3. We take maximum advantage of generalization. Each iteration, we add to
the support set any sample state which can, by executing a single action,
reach a state that passes the rollout test. In a discrete environment, this
would cause the support set to expand in one-step concentric \shells" back
from the goal. But in our continuous case, the function approximator may
be able to extrapolate correctly well beyond the support region|and when
this happens, we can add many points to the support set at once. This leads
to the very desirable behavior that the support set grows in big jumps in
regions where the value function is smooth.

Iteration 1, |Support|=4
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Iteration 2, |Support|=12
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Iteration 3, |Support|=256
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Figure 7: Grow-Support with quadratic regression on the gridworld. (Compare Figure 3.)

Iteration 1, |Support|=3
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Iteration 2, |Support|=213
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Iteration 5, |Support|=253
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Figure 8: Grow-Support with LWR on the two-puddle gridworld. (Compare Figure 4.)

Iteration 3, |Support|=79
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Iteration 8, |Support|=134
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Iteration 14, |Support|=206
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Figure 9: Grow-Support with backprop on car-on-the-hill. (Compare Figure 6.)

The algorithm, again restricted to the deterministic case for simplicity, is outlined in
the appendix. In Figures 7{9, we illustrate its convergence on the same combinations
of domain and function approximator which caused smooth value iteration to diverge.
In Figure 8, all but three points are added to the support within only �ve iterations,



and the resulting greedy policy is optimal. In Figure 9, after 14 iterations, the algo-
rithm terminates. Although 50 states near the discontinuity were not added to the
support set, the resulting policy is optimal within the support set. Grow-support
converged to a near-optimal policy for all the problems and �tters in Table 1.

The Grow-Support algorithm is more robust than value iteration. Empirically, it was
also seen to be no more computationally expensive (and often much cheaper) despite
the overhead of performing rollouts. Reasons for this are (1) the rollout test is not
expensive; (2) once a state has been added to the support, its value is �xed and it
needs no more computation; and most importantly, (3) the aggressive exploitation
of generalization enables the algorithm to converge in very few iterations. However,
with a nondeterministic problem, where multiple rollouts are required to assess the
accuracy of a prediction, Grow-Support would become more expensive.

It is easy to prove that Grow-Support will always terminate after a �nite number
of iterations. If the function approximator is inadequate for representing the J�

function, Grow-Support may terminate before adding all sample states to the support
set. When this happens, we then know exactly which of the sample states are having
trouble and which have been learned. This suggests potential schemes for adaptively
adding sample states to the support in problematic regions. Investigation of these
ideas is in progress.

In conclusion, we have demonstrated that dynamic programming methods may di-
verge when their tables are replaced by generalizing function approximators. Our
Grow-Support algorithm uses rollouts, rather than one-step backups, to assign train-
ing values and to keep inaccurate states out of the training set. We believe these
principles will contribute substantially to producing practical, robust, reinforcement
learning.
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APPENDIX: ALGORITHMS

Smooth Value Iteration(X;G;A;Next-State;Cost;FitJ):
Given: � a �nite collection of states X̂ = fx1; x2; : : : xNg sampled from the

continuous state space X � <n, and goal region G � X

� a �nite set of allowable actions A
� a deterministic transition function Next-State : X �A! X

� the 1-step cost function Cost : X � A! <
� a smoothing function approximator FitJ

iter := 0
j(0)[i] := 0 8i = 1 : : :N
repeat

Train FitJ
(iter) to approximate the training set:

8><
>:

x1 7! j(iter)[1]
...

xN 7! j(iter)[N ]

9>=
>;iter := iter + 1;

for i := 1 : : :N do

j(iter)[i] :=

�
0 if xi 2 G

mina2A
�
Cost(xi; a) + FitJ

(iter�1)(Next-State(xi; a))
�

otherwise

until j array stops changing



subroutine RolloutCost(x;J):
Starting from state x, follow the greedy policy de�ned by value function J until

either reaching the goal, or exceeding a total path cost of J(x) + �. Then return:
�! the actual total cost of the path, if goal is reached from x with cost � J(x) + � ;
�! 1, if goal is not reached in cost J(x) + �.

Grow-Support(X;G;A;Next-State;Cost;FitJ):
Given: � exactly the same inputs as Smooth Value Iteration.

Support := f(xi 7! 0) j xi 2 Gg
repeat

Train FitJ to approximate the training set Support
for each xi 62 Support do

c := mina2A [Cost(xi; a) +RolloutCost(Next-State(xi; a);FitJ)]
if c <1 then

add (xi 7! c) to the training set Support
until Support stops growing or includes all sample points.
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