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Abstract

Experience replay is a key technique behind
many recent advances in deep reinforcement
learning. Allowing the agent to learn from earlier
memories can speed up learning and break unde-
sirable temporal correlations. Despite its wide-
spread application, very little is understood about
the properties of experience replay. How does
the amount of memory kept affect learning dy-
namics? Does it help to prioritize certain expe-
riences? In this paper, we address these ques-
tions by formulating a dynamical systems ODE
model of Q-learning with experience replay. We
derive analytic solutions of the ODE for a simple
setting. We show that even in this very simple
setting, the amount of memory kept can substan-
tially affect the agent’s performance—too much
or too little memory both slow down learning.
Moreover, we characterize regimes where pri-
oritized replay harms the agent’s learning. We
show that our analytic solutions have excellent
agreement with experiments. Finally, we propose
a simple algorithm for adaptively changing the
memory buffer size which achieves consistently
good empirical performance.

1 Introduction

In reinforcement learning (RL), the agent observes a stream
of experiences and uses each experience to update its in-
ternal beliefs. For example, an experience could be a tu-
ple of (state, action, reward, new state), and the agent
could use each experience to update its value function via
TD-learning. In standard RL algorithms, an experience is
immediately discarded after it’s used for an update. Re-
cent breakthroughs in RL leveraged an important technique
called experience replay (ER), in which experiences are
stored in a memory buffer of certain size; when the buffer
is full, oldest memories are discarded. At each step, a ran-
dom batch of experiences are sampled from the buffer to
update agent’s parameters. The intuition is that experience
replay breaks the temporal correlations and increases both
data usage and computation efficiency Lin (1992).

Combined with deep learning, experience replay has en-
abled impressive performances in AlphaGo Silver et al.
(2016), Atari games Mnih et al. (2015), etc. Despite the ap-
parent importance of having a memory buffer and its pop-
ularity in deep RL, relatively little is understood about how
basic characteristics of the buffer, such as its size, affect the
learning dynamics and performance of the agent. In prac-
tice, a memory buffer size is determined by heuristics and
then is fixed for the agent.

Prioritized experience replay (pER) is a modification of ER
whereby instead of uniformly choosing experiences from
the buffer to use in update, the agent is more likely to
sample experiences that are “surprising” Moore & Atke-
son (1993) Schaul et al. (2015). pER is empirical shown to
improve the agent’s performance compared to the regular
ER, but we also lack a good mathematical model of pER.

Contributions. In this paper, we perform a first rigor-
ous study of how the size of the memory buffer affects the
agent’s learning behavior. We develop an ODE model of
experience replay and prioritized replay. In a simple set-
ting, we derive analytic solutions characterizing the agent’s
learning dynamics. These solutions directly quantify the
effects of memory buffer size on the learning rate. Sur-
prisingly, even in this simple case with no value function
model mismatch, memory size has a non-monotonic effect
on learning rate. Too much or too little memory both can
slow down learning. Moreover, prioritized replay could
also slow down learning. We confirm these theoretical pre-
dictions with experiments. This motivated us to develop a
simple adaptive experience replay (aER) algorithm to au-
tomatically learn the memory buffer size as the agent is
learning its other parameters. We demonstrate that aER
consistently improves agent’s performance.

Related works. The memory replay technique has been
widely implemented in RL experiments currently and is
shown to have a good performance for different algorithms
such as actor-critic RL algorithms Wawrzyński (2009),
deep Q-Network (DQN) algorithms Mnih et al. (2013,
2015), and double Q-learning algorithms Van Hasselt et al.
(2016). To further make good use of experience, priori-
tized methods are proposed for RL algorithms Moore &
Atkeson (1993); Peng & Williams (1993). The main idea
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of prioritization is to sample transitions that lead to larger
value change in RL more frequently. The probability of
selecting an experience is determined by the relative mag-
nitude of the temporal difference error (TD-error). This has
been reported to be effective in many experiments Moore
& Atkeson (1993); Van Seijen & Sutton (2013); Schaul
et al. (2015). Measures other than TD-error are also in
literature to weight experience; examples include rewards
Tessler et al. (2016) and the transition property Peng et al.
(2016).

The performance of RL with experience replay is similar
to the batch RL but in an incremental way Lagoudakis &
Parr (2003); Kalyanakrishnan & Stone (2007); Ernst et al.
(2005). Another approach to reuse data in RL is called
model-learning or Dyna architecture, which builds a model
to simulate and generate new data Sutton (1990); Sutton
et al. (2008). This method, however, induces both extra
computation cost and modeling error for the data.

2 A Dynamical System Model of Experience
Replay

In an RL task, an agent takes actions a, observes states x
and receives rewards r in sequence during its interaction
with the environment. The goal is to learn a strategy which
leads to best possible reward. A standard learning frame-
work for the agent is to use the action-value function to
learn optimal behavior and perform action selection. The
optimal action-value Q(x, a) is defined as the maximum
expected return when the agent starts from state x and takes
first action a. It satisfies

Q(x, a) = E

[
K∑
i=0

γir(xi, ai)

∣∣∣∣∣x0 = x, a0 = a

]
= r(x, a) + γ

∑
y∈X

P (x, a, y) sup
a′∈A

Q(y, a′),

(1)

where r(x, a) is the reward function, γ (0 6 γ < 1) de-
notes the discount factor, and P (x, a, y) is the state transi-
tion probability kernel, defined as the probability of moving
from state x to state y under action a.

In practice, the state space is usually large and the func-
tion approximation is adopted to estimate the action-value
functionQ(x, a; θ); deep Q-Network (DQN) is an example
of this approach. At learning step t, the commonly-used
TD-learning method updates the weight θ according to

θ(t+ 1) =θ(t) + α(t)

[
r(t′) + γ ·max

a′∈A
Q[x(t′ + 1), a′; θ(t)]

−Q
[
x(t′), a(t′); θ(t)

]]
×∇θQ[x(t′), a(t′); θ(t)],

(2)
where α(t) is the step size. Here the data collected at learn-
ing step t′ is utilized to do the TD update. For standard

RL algorithms, only the most recent transition is visited
and t′ = t, while for the ER approach, experience data are
reused and t′ < t.

Algorithm 1 Reinforcement Learning with Experience Re-
play

1: Input: memory size N, minibatch size m, step size α,
discount factor γ, total steps T , initial weights θ0, up-
date policy πθ

2: Initialize replay memory BUFFER with capacity N
3: Observe initial state x0
4: for t = 1 to T do
5: Take action at ∼ πθ(xt)
6: Observe rt and xt+1

7: Store transition (xt, at, rt, xt+1) in memory
BUFFER

8: for j = 1 to m do
9: Sample a transition (xi, ai, ri, xi+1) randomly

from BUFFER
10: Compute TD-error

δi = ri + γmaxaQ(xi+1, a; θ)−Q(xi, ai; θ)
11: Update weights θ = θ + αδi∇θQ(xi, ai; θ)
12: end for
13: end for

The effect of the memory buffer can not be extracted from
the ER algorithm itself, and the hidden mechanism is hard
to perceive only with experiments in a black box. Thus
we derive an ODE model to simulate the learning process.
General results are obtained numerically and even analyt-
ically, confirmed as good matches with experiments. This
analytic approach enables us to systematically analyze how
the replay memory affects the learning process and what is
the principle behind it.

The ODE model corresponds to a continuous interpolation
of the discrete learning step t (t = 0, 1, 2, ...). This contin-
uous approximation works well when the step size α is not
too large, i.e., there is no dramatical change for the weights
within a few steps. This criterion is often met in real ex-
periments. More details of the ODE derivation is in the
Appendix.

Under the continuous approximation, the dynamic equation
for the weights is

dθ(t)

dt
= α(t)∇θQ[x(t′), a(t′); θ(t)]

[
−Q[x(t′), a(t′); θ(t)]

+ r(t′) + γ ·max
a′∈A

Q[x(t′ + 1), a′; θ(t)]

]
,

(3)

The agent’s state evolution can also be estimated as

dx(t)

dt
=

∫
X

P [x(t), a(t), y] ydy (4)
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Here the action a(t) is selected according to a policy π

a(t) = π[x(t)] (5)

Together with Eq. (4), the state evolving trajectory can be
depicted. For instance, with an ε−greedy policy, the state
movement obeys

dx(t)

dt
=

∫
X

ydy

[
ε
∫
A
P [x(t), a, y] da∫

A
da

+ (1− ε)P [x(t), arg max
a∈A

Q[x(t), a; θ(t)]), y]

]
(6)

In ER, recent transitions are stored in a replay memory with
the capacity N , and a minibatch of data is randomly cho-
sen for TD-learning. The parameter dynamics under expe-
rience replay is

dθ(t)

dt
=
mα(t)

n(t)

∫ t

t−n(t)
dt′∇θQ[x(t′), a(t′); θ(t)]

[
r(t′)

+ γ ·max
a∈A

Q[x(t′ + 1), a; θ(t)]−Q[x(t′), a(t′); θ(t)]

]
(7)

wherem is the minibatch size and n(t) 6 N is the memory
size. Eq. (7) can be viewed as giving the expected gradient
value of the parameter updates at each time step.

Now we are able to analyze the learning process, more
specifically, the weights θ(t) and state x(t) as a function
of learning step, based on Eq. (4) and Eq. (7). No exper-
iment is needed and the influence of the memory buffer or
other parameters can be analyzed explicitly from the ana-
lytical solutions. Our theoretical model is further validated
by experiments based on ER algorithms.

Prioritized replay (pER) proposes to speed up the learning
process by sampling the experience transitions according
to a non-uniform probability distribution. One commonly
used model is to parametrize the probability for selecting
transition i as

P (i) =
|δi|β∑
j |δj |β

, (8)

where β is a constant exponent and δi = ri +
γmaxaQ(si+1, a; θ) − Q(si, ai; θ) is the TD-error. The
only difference between ER and pER is in how to sample
experiences.

Taking β = 2 as an instance, the dynamic equation for
weights under pER is given by

dθ(t)

dt
=
mα(t)

∫ t
t−n δ

3(t′)∇θQ[x(t′), a(t′); θ(t)]dt′∫ t
t−n δ

2(t′)dt′

(9)
where δ(t′) = r(t′) + γ · maxa∈AQ[x(t′ + 1), a; θ(t)] −
Q[x(t′), a(t′); θ(t)].

3 Analysis of Memory Effects in a Simple
Setting

Starting from a toy game we call LineSearch, we analyti-
cally solve the ODEs (7) and (9) to get the learning dynam-
ics and quantify the effects of memory. We further char-
acterize settings when pER helps or hinders learning tasks
compared to ER. Finally, we show that our theoretical pre-
dictions have excellent agreement with experiments.

Model setup. We first define a simple game LineSearch,
for which the space of agent state x is one dimensional,
the reward function is linear r(x) = β1x + β2, and the
action is binary a ∈ {v,−v}, where v is a constant. In a
transition, the next state is determined by adding the action
value to the current state, i.e., x(t + 1) = x(t) + a(t).
When the discount factor γ is set as 0 (non-zero γ setting
gives similar agent’s behavior and will be addressed later),
the real action-value function is

Qreal(x, a) = r(x+ a)

= β1 · (x+ a) + β2
(10)

When there is no model mismatch, the action-value func-
tion of the agent is

Qagent(x, a; θ) = θ1 · (x+ a) + θ2, (11)

At t = 0, θ1 and θ2 are randomly initialized. As the agent
performs TD update, we are interested in how quickly the
θ’s approach the true β’s. A natural evaluation metric is
∆θ1 and ∆θ2 defined as

∆θ1 = θ1 − β1 and ∆θ2 = θ2 − β2 (12)

The agent learns well if ∆θ1 and ∆θ2 approach 0, and per-
forms badly when ∆θ1 or ∆θ2 is large. Under a greedy
policy, the evolution of the agent’s state is

dx(t)

dt
=

θ1
|θ1|

v, (13)

With the initial state denoted as x0, the evolution of the two
metrics is derived from Eqs. (7)-(13) as

d∆θ1(t)

dt
= −(b10+b11t+b12t

2)∆θ1(t)−(b20+b21t)∆θ2(t)

(14)

d∆θ2(t)

dt
= −(b20 + b21t)∆θ1(t)− b22∆θ2(t), (15)

where b10 = mα(n2v2/3+x20−nvx0), b11 = mα(2vx0−
nv2), b11 = mαv2, b20 = mα(x0 − nv/2), b21 = mαv,
and b22 = mα. Here our discussion is set in the θ1 > 0
region, similar study could be carried out when θ1 < 0.
Throughout this section, we choose the initial state x0 =
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(a) ER. (b) pER. (c) M vs. memory size for ER.

(d) ER with γ = 0. (e) Compare ER and pER (f) ER with γ = 0.7.

Figure 1: (a,b) Learning curves for two metrics ∆θ1 = θ1 − β1 and ∆θ2 = θ2 − β2, where θ1(2) and β1(2) are the weights
of the agent and the real weights, respectively. The scattered blue dots and orange squares represent the experimental
results for ∆θ1 and ∆θ2, using (a) ER algorithm and (b) pER algorithm. The blue and orange curves are the numerical
solutions for ∆θ1 and ∆θ2 based on our theoretical model. For both ER and pER, our theoretical predictions have excellent
agreement with the experimental results on the learning dynamics. (c) Dependence of final absolute metric sum M =
|∆θ1(t = 1000)|+ |∆θ2(t = 1000)| on memory size for different minibatch sizes. Note that smaller M stands for better
performance. Here we use the original setting when the discount factor γ = 0; m indicate batch size. (d,f) Contour plot
of measure M as a function of memory size and minibatch size, with the discount factor (d) γ = 0 and (f) γ = 0.5. The
stars denote the optimal memory sizes given minibatch values. The plots in (c) corresponds to the situations in (d) when
the minibatch size is 5, 10, and 40. (e) The red (blue) region stands for the situations when pER (ER) works better. The
rest white region is the situations when the two settings behave similarly. More precisely, the absolute difference of M for
the ER and pER is less than 1.5 × 10−3 in the white area. Here (c-f) are plotted based on theory predictions and also fit
experiments well, similar to (a,b).

−5, the action amplitude v = 0.01, and the initial metrics
∆θ01 = −0.1 and ∆θ02 = 0.5.

The learning process in theory can then be calculated based
on the dynamic equations of the metrics, i.e., Eq. (14) and
Eq. (15). It should be noted that the weights θ are obtained
at the same time as θ1 = ∆θ1+β1 and θ2 = ∆θ2+β2. The
detailed analytical solution and discussion for the ODEs
Eq. (14) and Eq. (15) are given in Appendix.

The theoretical learning curves for both RL and pRL set-
tings are depicted in Fig. 1a and Fig. 1b, with the mini-
batch size m being 5 and the step size α being 0.01. The
two metrics ∆θ1 and ∆θ2 are represented by the solid blue
and orange curve, respectively.

To demonstrate the validity of our theoretical solution, we
also performed experiments on LineSearch following ER
and pER algorithms. For illustration, we plot the experi-

mental results in Fig. 1a and Fig. 1b, where the blue dots
stand for ∆θ1 and the orange square denotes ∆θ2. Our
theoretical prediction has excellent agreement with experi-
ment results.

Effects of memory size. By solving the ODEs, we found
that the memory setting has a non-monotonic effect on the
RL performance. We are able to extract the mechanism
behind this phenomenon from the analytic expressions.

With θ2 being fixed as the real value θ2 ≡ β2, the metric
∆θ1(t) is solved analytically

∆θ1(t) =∆θ01e
−mα

[
v2

3 t
3+

v(2x0−Nv)
2 t2

]

· e−mα
[(
x2
0−Nvx0+

N2v2

3

)
t− 1

18N
2v(Nv−9x0)

]
,

(16)
The metric converges exponentially to 0, but the rate
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of convergence (the exponent) has non-monotonic depen-
dence on the memory size N .

In contrast, when θ1 is fixed to the correct value, θ1 ≡ β1,
the metric ∆θ2(t) evolves according to

∆θ2(t) = ∆θ02e
−mαt (17)

In this case, the choice of memory size has no effect on the
learning behavior. Detailed explanation and analysis are in
Appendix.

Now we turn to a more general situation when the up-
dates of the two weights are coupled together. To exam-
ine the performance, we define a measure M = |∆θ1(t =
1000)|+ |∆θ2(t = 1000)|, i.e., the sum of the two metrics
absolute values at the learning step 1000, the end of the
game. The smaller the measure M is, the better the agent
learns. Fig. 1d plots the dependence of M on the mem-
ory size N and the minibatch size m, with the step size
α = 10−3.

The learning performance is affected non-monotonically
by the memory size form < 20, while a monotonic relation
is observed for m > 20, as shown in Fig. 1d. For example,
an optimal memory size around 250 exists for m = 10, de-
noted by the red curve in Fig. 1c. In contrast, the measure
M experiences a monotonic decrease with the growth of
memory size for m = 40, plotted by the blue curve in Fig.
1c.

The influence of the memory setting in RL arises from the
trade-off between the overshooting and the weight update.
Here the term overshooting describes the phenomenon
when some of the weights are updated in the wrong di-
rection. For example, in Fig. 1a, θ1 actually moves further
away from β1 during times 200 to 500; θ2 also overshoots
at T = 600 and incurs negative bias. We first address the
settings with small minibatches. When the memory size is
also small, the learning process is more likely to overshoot
because of the limited memory capacity. When the replay
memory is enlarged, the overshooting effect is mitigated.
With the increase of the memory size, the averaged weight
update first becomes slowly then slightly accelerates. The
balance between these two contributions leads to the non-
monotonic nature. Whenm is large, there is still a trade-off
between overshooting and increasing weight update. How-
ever, the latter can not counteract the former because of the
quick convergence induced by the large TD update. Ana-
lytical expressions and numerical results are combined for
illustrations in Appendix.

Performance of prioritized replay. We further compare
pER and ER, and discuss how the memory buffer affects
pER based on our theoretical model. Fig. 1b plots the
learning curve for pER, which exhibits a similar property
as for ER in Fig. 1a . We compare the performance of RL
and pRL algorithms in Fig. 1e, where blue (red) regions

stand for cases when ER (pER) is better, and white areas
represent situations when the two algorithms perform sim-
ilarly. It is shown that pER performs relatively worse when
the memory size is small, particularly when the minibatch
size is not large. This is also attributed to the trade-off be-
tween the overshooting and quick weight update. For small
memory size, the overshooting effect is more serious under
the prioritized sampling, while for a large memory, the pri-
oritized agents update the weight quicker which leads to a
faster convergence. Demonstrations are given in Appendix.

Nonzero discount factor. The discount factor is set as 0
in the previous subsections for simplicity. Here we show
that the learning dynamics with γ > 0 is qualitatively sim-
ilar to the case when γ = 0 in the LineSearch game. With
a nonzero discount factor γ, i.e., considering the long-term
effect, the real action-value function under the greedy pol-
icy is

Qreal(x, a) = E
[ K∑
i=0

γi[β1(x0 + a0 + i|β1|v)

+ β2]

∣∣∣∣∣x0 = x, a0 = a

]
=

1− γK+1

1− γ
[β1(x+ a) + β2]

+ v|β1|
[
γ − γK+1

(1− γ)2
− KγK+1

1− γ

]
≈ β1

1− γ
(x+ a) +

β2
1− γ

+
γv|β1|

(1− γ)2
,

(18)

where K stands for the total training steps afterwards be-
fore the game ends. The approximation in Eq. (18) is valid
for large K and γ < 1. For instance, with the discount fac-
tor γ = 0.9, the contribution of the term γK after 100 steps
is γ100 = 0.00003.

When there is no model mismatch, the action-value func-
tion of the agent is

Qagent(x, a; θ) = θ1 · (x+ a) + θ2, (19)

Then the evolution of the two weights are derived together
with Eqs. (7)-(13) as

dθ1(t)

dt
=− (b10 + b11t+ b12t

2) [(1− γ)θ1(t)− β1]

− (b20 + b21t)[(1− γ)θ2(t)− γv|θ1(t)| − β2]
(20)

dθ2(t)

dt
=− (b20 + b21t) [(1− γ)θ1(t)− β1]

− b22 [(1− γ)θ2(t)− γv|θ1(t)| − β2] ,
(21)

where b10 = mα(n2v2/3+x20−nvx0), b11 = mα(2vx0−
nv2), b11 = mαv2, b20 = mα(x0 − nv/2), b21 = mαv,
and b22 = mα. The learning curve is attached in Appendix.
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Algorithm 2 Adaptive Memory Size Reinforcement Learn-
ing with Experience Replay

1: Input: initial memory size N0, minibatch size m, step
size α, discount factor γ, total steps T , initial weights
θ0, update policy πθ, number of checked oldest transi-
tions nold and memory adjustment internal k.

2: Initialize replay memory BUFFER with capacity N =
N0 and set |δold| = 0

3: Observe initial state x0
4: for t = 1 to T do
5: Take actions, observe, store transitions and do TD

updates as in ER algorithm
6: if mod(t, k) = 0 and memory BUFFER is full then
7: Compute |δold|′ =

∑t−N+nold

i=t−N+1 |ri +
γmaxaQ(xi+1, a; θ)−Q(xi, ai; θ)|

8: if |δold|′ > |δold| or N = k then
9: Enlarge the memory N = N + k

10: |δold| = |δold|′
11: else
12: Shrink the memory N = N − k, delete the

oldest k transitions in BUFFER
13: Compute |δold| =

∑t−N+k+nold

i=t−N+k+1 |ri +
γmaxaQ(xi+1, a; θ)−Q(xi, ai; θ)|

14: end if
15: end if
16: end for

We find that the ODEs for γ > 0 have similar form as γ =
0. Correspondingly, the results obey similar principles, as
shown in Fig. 1f. Here the step size is α = 10−3, the real
weights θr1 and θr2 are 0.1 and 0.5, and the initial weights
θ01 and θ02 are 0 and 1.

4 Adaptive Memory Size Algorithm

The analysis from the previous section motivated us to de-
velop a new algorithm that allows the agent to adaptively
adjust the memory size while it is learning other parame-
ters.

Intuition. The lesson from Section 3 is that an useful
adaptive algorithm should increase the memory capacity
when the overshooting effect dominates and shrink the
memory buffer if the weight update becomes too slow.

We use the change in absolute TD error of the oldest mem-
ories in the buffer as a proxy for whether the agent is over-
fitting to more recent memories. The intuition is that if the
TD error magnitude for the oldest transitions in the buffer
starts to increase—i.e. the old data violate the Bellman
equation more severely as the agent learns—then this is a
sign that the agent might be overshooting and overfitting
for the more recent experiences. In this case, we increase
the memory buffer to ensure that the older experiences are

(a) Learning curve for the LineSearch
game, when the memory is learned adap-
tively from 100 (solid) vs. fixed at 100
(dashed). Metric equal to 0 is optimal.

(b) Adaptive memory for the LineSearch
game starting from memory size of 100.

Figure 2: Learning curve and adaptive memory for Line-
Search and CartPole.

kept longer to be used for future updates. On the other
hand, if the TD error magnitude for the oldest transitions in
the buffer starts to decrease over time, then the older mem-
ories are likely to be less useful and the agent decreases the
memory buffer to accelerate the learning process.

Algorithm description. The memory size is adaptively
changed according to the TD error magnitude change of
the oldest transitions, characterized by |δold|′−|δold|. Here
|δold| and |δold|′ are defined as the sum of the absolute TD
errors of the old nold transitions in memory, where nold
is a hyperparameter which denotes the number of old data
we choose to examine. |δold| is first calculated. After k
steps, we derive |δold|′ and compare it with |δold|. More
specifically, every k steps, if the change of absolute TD
error magnitude sum for the old transitions decreases, i.e.,
|δold|′ < |δold|, the memory shrinks, otherwise increases,
as given in Algorithm 2, denoted as aER.

Performance on LineSearch. We first analyze how aER
works for the LineSearch game. With the minibatch size
m = 10 and the step size α = 10−3, the agent adap-
tively adjusts its memory capacity from 100 as depicted in
Fig. 2b. Compared to the setting with fixed memory size
as 100, the agent updates weights more effectively and the
overshooting effect is mitigated, indicated by Fig. 2a.
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(a) Learning curve for CartPole, when
the memory is adaptively learned starting
from 100, and fixed as 100 and 40000,
i.e., no experience is discarded.

(b) Learning curve for MountainCar,
when the memory is fixed as 20000, 50000
and 150000, and adaptively learned start-
ing from 20000 and 150000.

(c) Learning curve for Acrobot, when the
memory is fixed as 25000 and 100000, and
adaptively learned starting from 25000
and 100000.

(d) Adaptive memory change for Cart-
Pole starting from memory size of 100.

(e) Adaptive memory compared to the ini-
tial size 20000 and 150000 for Mountain-
Car.

(f) Adaptive memory compared to the ini-
tial size 25000 and 100000 for Acrobot.

Figure 3: (a-c) Learning curves for CartPole, MountainCar and Acrobot, which are averaged for 100 new games. (d-f)
Adaptive memory change from the initial size, corresponding to (a-c).

Performance on OpenAI Games with DQN. We further
evaluated the algorithm on three standard RL benchmarks
that we downloaded from OpenAI Gym, which are Cart-
Pole, MountainCar and Acrobot.

We used DQN with fully connected neural network (NN)
for the value function approximation, where the NN is one
layer for CartPole and two layers for MountainCar and Ac-
robot. Here we randomly initialize the weights, and set the
minibatch size m = 50 and memory adjustment internal
k = 20. The checked old transitions cover half of the initial
memory size, out of which we randomly sample 50 (1000)
experiences to approximate |δold|′ for CartPole (Mountain-
Car and Acrobot). The discount factor γ is set to be 0.9
for CartPole and 0.99 for MountainCar and Acrobot. The
step size α is 2 × 10−5, 6 × 10−4 and 10−3 for CartPole,
MountainCar and Acrobot.

The adaptive memory algorithm achieved better perfor-
mance compared to having a fixed-size replay buffer in all
three games.

First, for the CartPole game which starts with an initial
memory size of 100, the agent speeds up its learning from
adaptive adjustments of the memory size, as shown in Fig.
3a and Fig. 3d where each curve is averaged for 100 new
games. Here a larger static memory is always better and
the best performance is achieved when no experience is
discarded, corresponding to the full size 40, 000. With the

aER, the agent correctly learns to increase its memory size
from a small initial size of 100. We note that in 71% of
the trials the aER outperforms the averaged static memory
strategy.

In the second example, MountainCar, we found that the op-
timal fixed memory size is around 50,000, as indicated by
Fig. 3b and Fig. 3e where the result is averaged for 100 new
games. Both smaller and larger static memory sizes reduce
learning. In this setting, aER learns to increase the memory
size if the initial memory is small and it also learns to de-
crease the capacity if the initial memory is too large. 62%
and 86% trials with aER outperforms the averaged fixed
memory results for the initial size of 20,000 and 150,000,
respectively. We note that the dynamical change of mem-
ory size from 150,000 also enables the agent to even per-
form better than the best static result.

Last, aER also demonstrates good performance in the Ac-
robot game where a relatively smaller fixed memory is pre-
ferred, as plotted in Fig. 3c and Fig. 3f where each curve is
averaged for 100 new games. When the initial buffer size
is 25,000 and 100,000, aER outperforms the averaged fixed
memory approach in 100% and 95% of the experiments, re-
spectively. Here the agent learns to accelerate its learning
by dynamically decreasing the memory size.
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Additional considerations Little extra computation cost
is needed to carry out the aER. Taking the CartPole game
for example, only every 20 steps, we need to compute one
or two forward passes of neural network without backpro-
pogation. The examined batch is in the same size as the
sampling minibatch for TD update.

The simple aER algorithm has a tendency to shrink the
memory, but already shows good performance in experi-
ments. The goal of the TD learning process is to diminish
the TD error amplitude for all data, so the updated |δold|′
is more likely to be less than |δold| in average sense. One
possible solution is to change the criterion for shrinking
the memory buffer to be |δold|′ < |δold| − ε, where ε could
be a predefined constant, or learned online such as from
the averaged TD error amplitude change through the whole
dataset and the previous |δold| − |δold|′ value.

5 Discussion

Our analytic solutions, confirmed by experiments, demon-
strate that the size of the memory buffer can substantially
affect the agent’s learning dynamics even in very simple
settings. Perhaps surprisingly, the memory size effect is
non-monotonic even when there is no model mismatch be-
tween the true value function and the agent’s value func-
tion. Too little or too much memory can both slow down
the speed of agent’s learning of the correct value function.
We developed a simple adaptive memory algorithm which
evaluates the usefulness of the older memories and learns to
automatically adjust the buffer size. It shows consistent im-
provements over the current static memory size algorithms
in all four settings that we have evaluated. There are many
interesting directions to extend this adaptive approach. For
example, one could try to adaptively learn a prioritization
scheme which improves upon the prioritized replay. This
paper focused on simple settings in order to derive clean,
conceptual insights. Systematic evaluation of the effects of
memory buffer on large scale RL projects would also be of
great interest.

A Analytic solutions of the ODEs of the
learning dynamics

Utilizing our model, we are able to analyze the learning
properties and the influence of the replay memory system-
atically. How to choose replay memory settings, such as
memory size and minibatch size, are further discussed.

A.1 Solutions for 1D weights

In this subsection, we start with the simplest case when
the weight are one-dimensional to get some basic intuition
and to prepare for more complexed cases which will be ad-
dressed later.

Fix the intercept θ2 We first consider the setting when
the intercept θ2 in Eq. (11) is fixed. In this case, the ap-
proximated action-value function of the agent Qagent is

Qagent(x, a; θ) = θ · (x+ a) + β2 (22)

Note that the real action-value function is Qreal(x, a; θ) =
β1 · (x+a) +β2. The weight is initialized to be θ0, and the
initial metric is ∆θ0 = θ0 − β1 correspondingly.

The metric as a function of learning step ∆θ(t) is calcu-
lated analytically as

∆θ(t) = ∆θ0e−k(t), (23)

where the exponent k(t) is given by

k(t) = mα[
v2

9
t3 +

x0v

2
t2 + x20t] (t 6 N) (24a)

k(t) = mα

[
v2

3
t3 +

v(2x0 −Nv)

2
t2 − 1

18
N2v (Nv − 9x0)

+

(
x20 −Nvx0 +

N2v2

3

)
t

]
(t > N)

(24b)
The learning process consists of two parts. In the begin-
ning, The exponent k gradually grows from 0, described by
Eq. (24a). After the replay memory gets full, the memory
buffer becomes a sliding window and the exponent evolves
according to Eq. (24b). The metric ∆θ approaches the
desired value 0 exponentially and the exponent is a cubic
function of the learning step t.

In Fig. 4, we present the learning curves of the exponent k
and the metric ∆θ for different memory sizes N . Here the
minibatch sizem is 5 and the step size α is 2×10−5. In the
whole learning process, the exponent grows monotonically
and the metric ∆θ decreases monotonically to 0, indicated
by Eq. (23).

We further study how the replay memory setting affects the
learning performance. In practice, the total training time
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(a) Dependence of exponent k on learning step t.

(b) Metric ∆θ/∆θ0 vs. learning step t.

Figure 4: Learning curve for the exponents k and the metric
∆θ/∆θ0 = e−k. The memory sizes N are 1, 50, 500,
1000.

for an agent to learn a certain amount of knowledge is used
to represent its performance. Here the total steps required
to reach k = K is chosen to stand for the learning ability of
the agent. The value K is our desired exponent value. For
instance, if K = 3, the agent is thought to learn well when
its metric is ∆θ = θ − β1 = 0.05∆θ0. Note that an agent
is viewed as a better learner if it uses less training time, i.e.,
less learning steps, to achieve k = K.

First, it is always more beneficial to have a larger minibatch
in this case. On the one hand, the exponent k is strictly pro-
portional to the minibatch size m. On the other hand, the
exponent monotonically increases during the whole learn-
ing process. Thus, the larger minibatch an agent has, the
faster it learns. It should be mentioned that in real experi-
ments, the minibatch cannot be too large, cause one gradi-
ent step size is required to be small to guarantee the validity
of TD-error update, and the gradient step size is propor-
tional to the minibatch size in the defined ER algorithm.

Second, the learning ability of the agent, represented by
the total steps an agent takes from the initial exponent to
k = K, has nonmonotonic dependence on the memory
size, as plotted by Fig. 5a. As the learning proceeds, the
weight update from the currently collected transition, i.e.,
αδi∆θQ(xi, ai; θ), first decreases, and then grows after the

(a) Steps required to target exponent k = K vs. mem-
ory size.

(b) Optimal meomroy size vs. target exponent

Figure 5: How memory size affects performance in fixed
intercept case.

moment when the state increases to be above 0. In the same
time, for any transition in this setting, the weight update is
always in the correct direction towards the real value β1.
That is, a larger weight update is always preferable.

In the beginning of the game, older transitions in the mem-
ory replay contribute more to the weight update and a larger
memory is more desirable. As soon as the agent reaches
the region where the weight update from its current state is
large enough, compared to the average of its past experi-
ence, only updating the current transition becomes a good
strategy. As illustrated by the blue curve in Fig. 4, for
memory size N = 1, it grows most slowly at start, the ve-
locity of its exponent increases gradually surpasses other
conditions with different memory size, and grows most
rapidly among all possible choices of N after learning step
t = 1000. Thus, the optimal memory size increases with
the growth of the target exponent K, abruptly falls to 1 at
a certain K,and remains to be 1 thereafter, as demonstrated
in Fig. 5b.

The prioritized method always outperforms the uniformly
selection approach in the fixed-intercept case. It is due to
the fact that, a larger absolute TD-error corresponds to a
larger derivative of the action-value function with respect
to the weight, and furthermore it corresponds to a larger
weight update. As mentioned above, a larger weight update
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is always beneficial. In the prioritized setting, transitions
with larger TD-error value are more frequently selected,
leading to a faster convergence to real weight value. It can
also be demonstrated analytically as the difference between
the exponent for the prioritized setting kpri(t) and for the
original one k(t) is written as

kpri(t)− k(t) = c(t)v3t3
[(

2vt+
15

4
x0

)2

+
15

16
x20

]
(t 6 N)

(25)

kpri(t)− k(t) = c′(t)v3N3

[(
2vt− 15

4
(vt+ x0)

)2

+
15

16
(vt+ x0)2

]
(t > N),

(26)
where c(t) > 0 and c′(t) > 0. It can be easily observed that
kpri(t) − k(t) > 0 at any learning step t, thus prioritized
learning converges more quickly than the original setting,
as illustrated by Fig. 6.

Figure 6: The learning curve for the metric ∆θ under con-
ditions with prioritized method (orange curve) and with-
out prioritized method (blue curve) in fixed intercept case.
Here the memory size is 500, batch size is 5 for illustration
purpose.

Fix the slope θ1 Another possible one-dimensional
action-value function weight is to fix the slope θ1 in Eq.
(11), which means

Qagent(x, a; θ) = β1 · (x+ a) + θ (27)

With the initial weight θ0, the initial metric is given by
∆θ0 = θ0 − β2, considering the real action-value function
is Qreal(x, a; θ) = β1 · (x+ a) + β2.

The metric ∆θ(t) = θ(t)− β2 is obtained analytically as

∆θ(t) = ∆θ0e−mαt (28)

Equation (28) suggests that the metric also decreases to the
target value 0 exponentially, but the exponent is propor-
tional to the learning step t. In strong contrast, the ex-
ponent is third-order polynomial with respect to t in the
fixed-intercept case. Thus, the learning is generally slower
for this fixed-slope case than the fixed-intercept case. For
example, when the minibatch size is 5 and the step size is
5×10−5, it takes the fixed-slope agent 30000 learning steps
to achieve ∆θ/∆θ0 = 0.05, while the fixed-intercept agent
only needs less than 1200 steps to learn.

The learning process and results are totally independent of
the initial state, velocity of state changing, and most im-
portantly, the memory size. The learning dynamics is fully
described by the step size, the minibatch size and the ini-
tial weights. This is due to the fact that all transitions are
identically useful in fixed-slope situation. At any learn-
ing step, it can be easily proved that the TD-error and the
weight update are the same for all transition with all possi-
ble state values. The selection of data for update no longer
matters, so different replay memory settings have same per-
formance.

Similarly, the prioritized method has the same learning re-
sults as the original setting, cause all transitions are equal in
the sense of weight update. This can be confirmed by the-
oretical calculation, which yields that the exponent for the
prioritized setting kpri(t) and the original one k(t) satisfy

kpri(t) ≡ k(t). (29)

A.2 Solution for the full model

From Eq. (14) and Eq. (15), the dynamic equation for the
metric ∆θ1(t) is given by

0 =
d2∆θ1(t)

dt2
+
c10 + c11t+ c12t

2 + c13t
3

d0 + d1t

d∆θ1(t)

dt

+
c00 + c01t+ c02t

2 + c03t
3

d0 + d1t
∆θ1(t) (t 6 N)

(30a)

∆θ1(t = 0) = θ01 − β1 (30b)

d∆θ1(t = 0)

dt
= −mαx20(θ01 − β1)−mαx0(θ02 − β2)

(30c)

0 =
d2∆θ1(t)

dt2
+
g10 + g11t+ g12t

2 + g13t
3

h0 + h1t

d∆θ1(t)

dt

+
g00 + g01t+ g02t

2

h0 + h1t
∆θ1(t) (t > N)

(31a)

∆θ1(t = N+) = ∆θ1(t = N−) (31b)
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d∆θ1(t = N+)

dt
=

d∆θ1(t = N−)

dt
(31c)

After ∆θ1(t) is obtained, another metric ∆θ2(t) can be de-
rived based on Eq. (14). Here the parameters are

c00 = 12αmvx20 (32a)

c01 = 6αmv2x0 (32b)

c02 = 2α2m2v2x0 + 4αmv3 (32c)

c03 = α2m2v3 (32d)

c10 = 24αmx30 + 24αmx0 − 12v (32e)

c11 = 12αmv + 36αmvx20 (32f)

c12 = 20αmv2x0 (32g)

c13 = 4αmv3 (32h)

d0 = 24x0 (32i)

d1 = 24v (32j)

g00 =αmv

[
N2v2(4− αmN) + 2Nvx0(αmN − 12)

+ 24x20

]
(33a)

g01 = 2αmv2 [Nv(αmN − 12) + 24x0] (33b)

g02 = 24αmv3 (33c)

g10 =4

[
v
(
αmN

(
N2v2 + 3

)
+ 6
)
− αmx0

(
5N2v2 + 6

)
+ 9αmNvx20 − 6αmx30

]
(33d)

g11 = −4αmv
(
5N2v2 − 18Nvx0 + 18x20 + 6

)
(33e)

g12 = 36αmv2 (Nv − 2x0) (33f)

(a) First stage

(b) Last stage

Figure 7: Approximated analytical solutions for two met-
rics. The dashed curves are analytical results from (a) Eq.
(34) and (b) Eq. (36). (a) The solid curves represent the
numerical solution.

g13 = 24αmv3 (33g)

h0 = 24x0 − 12Nv (33h)

Approximated analytical solutions can be derived. For Fig.
1a, the approximated learning functions in the first and last
stage are plotted in Fig. 7.

In the beginning part, the metrics are estimated as

∆θ1(t) =
∆θ01 + ∆θ01x

2
0e
αmt(−x2

0−1) −∆θ02x0
x20 + 1

+
∆θ02x0e

αmt(−x2
0−1)

x20 + 1

(34a)

∆θ2(t) =
∆θ01x0e

αmt(−x2
0−1) + ∆θ02e

αmt(−x2
0−1)

x20 + 1

+
∆θ02x

2
0 −∆θ01x0
x20 + 1

(34b)
As illustrated by the dashed curve in Fig. 7a, this estima-
tion fits the real solution well when the learning step is less
than 100.
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(a) ER. (b) pER. (c) Compare ER and pER.

Figure 8: Contour plot of final absolute metric sum M = |∆θ1(t = 1000)| + |∆θ2(t = 1000)| as a function of memory
size and minibatch size for (a) ER and (b) pER algorithms. Smaller final total metric stands for better performance. The
stars denote the optimal memory sizes given minibatch values. (c) The contour plot of the difference of the final absolute
metric sum M for the original setting and the prioritized setting as a function of memory size and minibatch size, i.e.,
the result of subtracting Fig. 1d by Fig. 8b. The positive value represents that the prioritized method is useful, while the
negative value denotes that the prioritized method is harmful

Equation (34) indicates that the weights changes rapidly to

∆θ1(t)→ ∆θ01 −
x0
(
∆θ02 + ∆θ01x0

)
x20 + 1

(35a)

∆θ2(t)→ ∆θ02 −
∆θ02 + ∆θ01x0

x20 + 1
(35b)

After the swift change, the metrics remain constant for a
short period, as shown in Fig. 7a. Note that the value
changing behavior happens so fast that the values given in
Eq. (35) do not rely on the memory size, policy, minibatch
size and even the step size.

In the last stage of the learning, the metrics are approxi-
mated as

∆θ1(t) = ∆θ11e
− 1

3αmt
3v2 (36a)

∆θ2(t) =
32/3∆θ11

3
√
αmv2Γ

(
2
3 ,

1
3mt

3v2α
)

3∆θ12v

3v

−
32/3∆θ11Γ

(
2
3

)
3
√
αmv2

3v
,

(36b)
where ∆θ11 and ∆θ12 are estimated values for ∆θ1 and ∆θ2
when the agent enters the last stage. The learning curve
in the last stage is illustrated in Fig. 7b. Here the guess
for ∆θ11 and ∆θ12 can vary a lot. In the rigorous result, we
observe a delayed effect, which is due to the fact that the
agent does not fully enter the last stage in our experiment
time scale and the neglected terms for the derivation of Eq.
(36) also contribute to the result.

From Eq. (36) we observe that the weights finally approach

∆θ1(t)→ 0 (37a)

∆θ2(t)→
3∆θ12v − 32/3∆θ11Γ

(
2
3

)
3
√
αmv2

3v
(37b)

It should be addressed that the metric ∆θ2 does not con-
verge to 0 because the agent changes the state unidirec-
tionally and the movement finally reaches a balance with
the weight update. Thus, in order to make the metric as
near 0 as possible at last, it is crucial for the agent to have
small value of Eq. (37b) when it enters the final stage of
the learning process.

Here we illustrate in details how the memory setting af-
fects the learning performance from the trade-off between
the overshooting and the weight update. When the mem-
ory size is small, overshooting is more likely to take place
owing to the limited memory size. As depicted by the solid
curves in Fig. 9b when the memory size is 100, the metric
∆θ2 is gradually fitted from positive to negative, while ∆θ1
remains to be positive after the first stage. From Eq. (37b)
we know that, in this case, the absolute value which ∆θ2
approaches is large, confirmed by Fig. 9b. With the growth
of memory size, the overshooting effect is mitigated. In
this case, the weight update is first decelerated and then
slightly accelerates. The optimal memory size is reached
around 250, as depicted by Fig. 9c. When the memory size
continues to increase, the agent suffers little overshooting
issue. The convergence is slower than the optimal one be-
cause of the smaller weight update, as shown in Fig. 9d.

B Effects of memory size in prioritized
replay

Here we analyze the effects of the memory replay on the
prioritized methods. Fig. 8b presents the dependence of the
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(a) Final absolute metric sumM vs. memory size for
different minibatch size.

(b) Memory size N = 100, Minibatch size m = 10.

(c) Memory size N = 250, Minibatch size m = 10. (d) Memory size N = 1000, Minibatch size m =
10.

Figure 9: (b-d) Learning curve for the two metrics ∆θ1 and ∆θ2 with or without prioritized methods.

Figure 10: Learning curve for two metrics ∆θ1 = θ1 − θr1
and ∆θ2 = θ2−θr2, where θ1(2) and θr1(2) are the weights of
the agent and the real weights, respectively. The scattered
blue dots and orange squares represent the experimental re-
sults for ∆θ1 and ∆θ2, based on the ER algorithm. The
blue and orange curve are the theoretical solutions for ∆θ1
and ∆θ2.

final absolute metric sumM on memory size and minibatch
size, which exhibits a similar behavior as in the original set-
ting and the causes are also similar. M has a nonmonotonic
dependence on memory given the batch size less than 15,
and decreases monotonically with the increase of memory.
Fig. 8c depicts how the difference of M between the orig-
inal and prioritized settings depend on memory size and
minibatch size. A positive difference value means that the
prioritized setting is better. Fig. 1e is derived from it.

In principle, the pER algorithm is found to perform rela-
tively worse than the ER when both the memory size and
minibatch size is small, as indicated by Fig. 8c. This could
also be explained with the trade-off between the overshoot-
ing and quick weight update, similar to the situation in Fig.
9a. As plotted in Fig. 9b and Fig. 9d, for the memory
size N of 100, the prioritized setting makes the overshoot-
ing even worse; while for N = 1000, the weights are
quickly updated and the prioritized agents converge faster.
It should be noted that there are more complicated situa-
tions in this two-dimensional-weight situation. For ∆θ2,
prioritized scheme always results in a faster weight update,
while for ∆θ1, this does not necessarily hold true accord-
ing to the definition of the weight update. For example, in
Fig. 9c, before the learning step 500, the non-prioritized
case actually learns faster than the prioritized case.



The Effects of Memory Replay in Reinforcement Learning

C Nonzero discount factor

The theoretical model when γ > 0 also fits well with the
experiments’ result, as illustrated in Fig. 10, where the
minibatch size m is 5, the step size α is 0.01, the discount
factor γ is 0.5, the real weights β1 and β2 are 0.1 and 0.5,
and the initial weights θ01 and θ02 are 0 and 1.
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Wawrzyński, Paweł. Real-time reinforcement learning by
sequential actor–critics and experience replay. Neural
Networks, 22(10):1484–1497, 2009.


	1 Introduction
	2 A Dynamical System Model of Experience Replay
	3 Analysis of Memory Effects in a Simple Setting
	4 Adaptive Memory Size Algorithm
	5 Discussion
	A Analytic solutions of the ODEs of the learning dynamics
	A.1 Solutions for 1D weights
	A.2 Solution for the full model

	B Effects of memory size in prioritized replay
	C Nonzero discount factor

