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Abstract
In reinforcement learning, it is common to let an
agent interact for a fixed amount of time with its
environment before resetting it and repeating the
process in a series of episodes. The task that the
agent has to learn can either be to maximize its
performance over (i) that fixed period, or (ii) an
indefinite period where time limits are only used
during training to diversify experience. In this
paper, we provide a formal account for how time
limits could effectively be handled in each of the
two cases and explain why not doing so can cause
state-aliasing and invalidation of experience re-
play, leading to suboptimal policies and training
instability. In case (i), we argue that the termi-
nations due to time limits are in fact part of the
environment, and thus a notion of the remaining
time should be included as part of the agent’s in-
put to avoid violation of the Markov property. In
case (ii), the time limits are not part of the envi-
ronment and are only used to facilitate learning.
We argue that this insight should be incorporated
by bootstrapping from the value of the state at
the end of each partial episode. For both cases,
we illustrate empirically the significance of our
considerations in improving the performance and
stability of existing reinforcement learning algo-
rithms, showing state-of-the-art results on several
control tasks.

1. Introduction
The reinforcement learning framework (Kaelbling et al.,
1996; Sutton & Barto, 1998; Szepesvari, 2010) considers a
sequential interaction between an agent and its environment.
At every time step t, the agent receives a representation St of
the environment’s state, selects an action At that is executed
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in the environment which in turn provides a representa-
tion St+1 of the successor state and a reward signal Rt+1.
An individual reward received by the agent does not directly
indicate the quality of its latest action as some rewards may
be the consequence of a series of actions taken in the past.
Thus, the goal of the agent is to maximize the discounted
sum of future rewards, also known as the return:

Gt = Rt+1+γRt+2+γ
2Rt+3+ ... =

∞∑
k=1

γk−1Rt+k (1)

A discount factor 0 ≤ γ < 1 is necessary to exponentially
decay the future rewards ensuring bounded returns. While
the series is infinite, it is common to use this expression
even in the case of possible terminations, such as timeouts,
by considering them to be the entering of an absorbing
state that transitions only to itself and generates zero re-
wards thereafter. However, when the maximum length of an
episode is fixed, it is easier to rewrite the expression above
by explicitly including the time limit T :

Gt:T = Rt+1 + ...+ γT−t−1RT =

T−t∑
k=1

γk−1Rt+k (2)

Optimizing for the expectation of the return specified in
Equation 2 is suitable for naturally time-limited tasks where
the agent has to maximize its expected return only over
a fixed episode length. In this case, since the return is
bounded, a discount factor of γ = 1 can be used. However,
in practice it is still common to keep γ smaller than 1 in
order to give more priority to short-term rewards. Under
this optimality model, the objective of the agent does not go
beyond the time limit. Therefore, such an agent could for
example learn to take more risky actions leading to higher
expected returns as approaching the time limit. In Section 2,
we study this case and illustrate that due to the time limit
terminations, the remaining time is an inherent part of the
environment’s state and is essential to its Markov property
(Sutton & Barto, 1998). Therefore, we argue for the inclu-
sion of a notion of the remaining time in the agent’s input,
an approach that we refer to as time-awareness (TA). We
describe various scenarios where lacking a notion of the re-
maining time can lead to suboptimal policies and instability,
and demonstrate significant performance improvements for
agents with time-awareness.
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(a) Standard (b) Time-awareness (c) Partial-episode bootstrapping

Figure 1. Illustrations of color-coded state-values and policies learned by tabular Q-learning overlaid on our Two-Goal Gridworld task.
(a) The standard agent perceives timeout terminations as environmental ones and is not time-aware. It always tries to go for the closest
goal even if the remaining time is not sufficient. (b) The time-aware agent maximizes its return over the finite horizon and learns to stay
in place when there is not enough time to reach a goal. (c) The agent with partial-episode bootstrapping maximizes its return over an
indefinite horizon, it learns to go for the most rewarding goal.

On the other hand, optimizing for the expectation of the
return specified by Equation 1 is relevant for time-unlimited
tasks where the interaction is not limited in time by nature.
In this case, the agent has to maximize its expected return
over an indefinite period, possibly infinite. However, it can
be desirable to still use time limits in order to diversify
the agent’s experience. For example, starting from highly
diverse states can avoid converging to suboptimal policies
that are limited to a fraction of the state space. In Section 3,
we show that in order to learn good policies that continue
beyond the time limit, it is important to differentiate between
the terminations that are due to time limits and those from
the environment. Specifically, for bootstrapping methods,
we argue to bootstrap at states where termination is due to
time limits, or more generally any other causes than the
environmental ones. We refer to this approach as partial-
episode bootstrapping (PEB) and demonstrate that it can
significantly improve the performance of agents.

We evaluate the impact of these considerations on a range
of novel and popular benchmark domains using tabular Q-
learning and Proximal Policy Optimization (PPO), a modern
deep reinforcement learning (Arulkumaran et al., 2017; Hen-
derson et al., 2017) algorithm which has recently been used
to achieve state-of-the-art performance in many domains
(Schulman et al., 2017; Heess et al., 2017). We use the
OpenAI Baselines (Hesse et al., 2017) implementation of
PPO with the hyperparameters reported by Schulman et al.
(2017), unless stated otherwise. The time-aware version of
PPO concatenates the observations provided by the environ-
ment and the remaining time represented by a scalar (nor-
malized from −1 to 1). The partial-episode bootstrapping
version of PPO makes a distinction between environment
resets and terminations by using the value of the last state in
the evaluation of the advantages if no termination is encoun-
tered. All novel tasks are implemented using the OpenAI
Gym (Brockman et al., 2016) and the standard benchmarks
are from the MuJoCo (Todorov et al., 2012) Gym collec-
tion. For each task involving PPO, to achieve perfect re-

producibility, we used the same 10 seeds (0, 1000, ..., 9000)
to initialize the pseudo-random number generators for the
agents and environments.

We empirically show that time-awareness significantly im-
proves the performance of PPO for the time-limited tasks
and can sometimes result in interesting behaviors. For ex-
ample, in the Hopper-v1 domain, our agent learns to effi-
ciently jump forward and fall towards the end of its time
in order to maximize its travelled distance, performing a
“photo finish”. For the time-unlimited tasks, we show that
bootstrapping at the end of partial episodes allows to sig-
nificantly outperform the standard PPO. In particular, on
Hopper-v1, even if trained with episodes of only 200 steps,
the agent with partial-episode bootstrapping manages to
learn to hop for at least 106 time steps (two hours). Finally,
we demonstrate that the negative impact of large experi-
ence replay buffers shown by Zhang & Sutton (2017) can
often be vastly reduced if timeout terminations are prop-
erly handled. The source code and videos can be found at:
sites.google.com/view/time-limits-in-rl.

While the importance of time-awareness for optimizing a
time-limited objective (finite horizon) is well-established
in the dynamic programming and optimal control literature
(Bertsekas, 1995; Bertsekas & Tsitsiklis, 1996) (e.g. model-
based backward induction), we observed that it has been
largely overlooked in the reinforcement learning literature
and in the design of the popular benchmarks. In the view
of the above, this paper may serve as an introduction to
this concept, and as the first attempt to bring it to bear on
the problems and practices of reinforcement learning. The
main contributions of this paper are: the thorough analysis
of the specific issues which can be caused by the lack of
time-awareness and the study of the impact of the discount
factor in time-limited tasks, the formalization of the partial-
episode bootstrapping method, and the extensive empirical
evaluations demonstrating improved performance and sta-
bility of two existing reinforcement learning algorithms.

sites.google.com/view/time-limits-in-rl


Time Limits in Reinforcement Learning

2. Time-awareness for time-limited tasks
In tasks that are time-limited by nature, the learning objec-
tive is to optimize the expectation of the return Gt:T from
Equation 2. Interactions are systematically terminated at a
predetermined time step T if no environmental termination
occurs earlier. This time-wise termination can be seen as
transitioning to a terminal state whenever the time limit is
reached. The states of the agent’s environment, formally
a Markov decision process (MDP) (Puterman, 2014), thus
contain a notion of the remaining time used by its transition
function. This time-dependent MDP can be thought of as
a stack of T time-independent MDPs followed by one that
only transitions to a terminal state. Thus, at each time step
t ∈ {0, ..., T − 1}, actions result in transitioning to a next
state in the next MDP in the stack.

In effect, a time-unaware agent has to act in a partially
observable Markov decision process (POMDP) (Lovejoy,
1991) where states that only differ by their remaining time
appear identical. This phenomenon is a form of state-
aliasing (Whitehead & Ballard, 1991) that is known to lead
to suboptimal policies and instability due to the infeasibility
of correct credit assignment. In this case, the terminations
due to time limits can only be interpreted as part of the
environment’s stochasticity where the time-unaware agent
perceives a chance of transitioning to a terminal state from
any given state. In fact, this perceived stochasticity depends
on the agent’s current behavioral policy. For example, an
agent could choose to stay in a fixed initial state during
the entire course of an episode and perceive the probability
of termination from that state to be 1/T , whereas it could
choose to always move away from it in which case this
probability would be perceived as zero.

In the view of the above, we consider time-awareness for
reinforcement learning agents in time-limited domains by
including directly the remaining time T − t in the agent’s
representation of the environment’s state or by providing a
way to infer it. The importance of the inclusion of a notion
of time in time-limited problems was first demonstrated in
the reinforcement learning literature by Harada (1997), yet
seems to have been largely overlooked. A major difference
between the approach of Harada (1997) (i.e. the QT-learning
algorithm) and that described in this paper, however, is that
we consider a more general class of time-dependent MDPs
where the reward distribution and the transitions can also
be time-dependent, preventing the possibility to consider
multiple time instances at once.

Here, we illustrate the issues faced by time-unaware agents
via exemplifying the case for value-based methods. The
state-value function at time t for a time-aware agent in an
environment with time limit T is:

vπ(s, T − t) = Eπ [Gt:T | St = s] (3)

By denoting an estimate of the state-value function by v̂π,
the target y for a one-step temporal-difference (TD) update
(Sutton, 1988), after transitioning to a state s′ and receiving
a reward r, is:

y =

{
r at all terminations
r + γv̂π(s

′, T − t− 1) otherwise
(4)

A time-unaware agent, deprived of the remaining time in-
formation, would learn value functions with or without
bootstrapping from the estimated value of s′ depending
on whether the time limit is reached. These conflicting up-
dates for estimating the value of the same state result in an
inaccurate average. It is worth noting that, for time-aware
agents, if the time limit is never varied, the inclusion of the
elapsed time t would be sufficient. This could then be mea-
sured by the agent itself from the beginning of the current
episode. For more generality, however, we chose to always
represent the remaining time.

2.1. The Last Moment problem

A

stay

1
0 –1

jump
B

stayTo give a simple example of
the learning of an optimal time-
dependent policy, we consider an
MDP containing two states A and
B. The agent always starts in state
A and has the possibility to choose an action to “stay” in
place with no rewards or a “jump” action that transitions it
to state B with a reward of 1. However, state B is a trap with
no exit where the only possible action provides a penalty of
−1. The episodes terminate after a fixed number of steps T .
The goal of the game is thus to jump just before the timeout.
For a time-unaware agent, the task is impossible to master
for T > 1 and the best feasible policy would be to stay in
place. In contrast, a time-aware agent can learn to stay in
place for T − 1 steps and then jump.

2.2. The Two-Goal Gridworld problem

To further illustrate the impact of state-aliasing for time-
unaware agents, we consider a deterministic gridworld envi-
ronment (see Figure 1) with two possible goals rewarding
50 for reaching the top-right and 20 for the bottom-left cells.
The agent has 5 actions: to move in cardinal directions or to
stay in place. Any movement incurs a penalty of −1 while
staying in place generates no reward. Episodes terminate
after 3 time steps or if the agent has reached a goal. The
initial state is randomly selected for every episode, exclud-
ing goals. We used tabular Q-learning (Watkins & Dayan,
1992) with random actions, trained until convergence with a
decaying learning rate and a discount factor of 0.99.

The time-aware agent has a state-action value table for each
time step and easily learns the optimal policy which is to
go for the closest goal when there is enough time, and
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to stay in place otherwise. For the time-unaware agent,
the greedy values of the cells adjacent to the top-right and
bottom-left goals converge to 49 and 19, respectively. Then,
since T = 3, from each remaining cell, the agent has
between 1 and 3 steps. If it moves it receives a penalty
and for 2/3 of the times bootstraps from the successor cell.
Thus, for v(s) = argmaxa q(s, a) and N(s) denoting the
neighbors of s, for states nonadjacent to the goals we have:
v(s) = 2/3(−1 + γmaxs′∈N(s) v(s

′)) + 1/3(−1). This
learned value function leads to a policy that always tries
to go for the closest goal even if there is not enough time.
While the final optimal policy does not actually require time
information, this example clearly shows that the confusion
during training due to state-aliasing can create a leakage of
the values to states that are out of reach. It is worth noting
that, Monte Carlo methods such as REINFORCE (Williams,
1992; Sutton et al., 2000) are not susceptible to this leakage
as they use complete returns instead of bootstrapping. How-
ever, without awareness of the remaining time, Monte Carlo
methods would still not be able to learn an optimal policy
in many cases, such as the Last Moment problem.

2.3. The Queue of Cars problem

An interesting
property of time-
aware agents is
the ability to dy-
namically adapt
to the remaining time. To illustrate this, we introduce an
environment which we call Queue of Cars where the agent
controls a vehicle that is held up behind an intermittently
moving queue of cars. The agent’s goal is to reach an exit
located 9 slots away from its starting position. At any time,
the agent can choose the “safe” action to stay in the queue
which may result in advancing to the next slot with 50%
probability, or to attempt to overtake with the “dangerous”
action which has 80% probability to advance but poses
a 10% chance of collision with the oncoming traffic and
terminating the episode. The agent only receives a reward
of 1 when it reaches the terminal destination.

Time-unaware agents cannot possibly adapt to the remain-
ing time and thus can only learn a fixed combination of
dangerous and safe actions based on the position. Figure 2
shows that a time-aware PPO agent can optimally adapt to
the remaining time and its distance to the goal.

2.4. Standard control tasks

In this section, we compare the performance of PPO with
and without the remaining time as part of the agent’s input
on 19 continuous control tasks from the OpenAI’s MuJoCo
Gym benchmarks (Brockman et al., 2016; Duan et al., 2016).
By default, these environments use predefined time limits
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Figure 2. Heat map of the learned “dangerous” action probabilities
overlaid on our Queue of Cars problem (0 and 1 denote black and
white respectively). The 9 non-terminal states are represented from
left to right. The time-aware PPO agent learns to optimally choose
actions with decreasing remaining time, while standard PPO learns
various suboptimal strategies depending on the initialization seeds.

which are perceived as environmental terminations. The
results in Figure 3 demonstrate that time-awareness (TA)
significantly improves the performance and stability of PPO.
To better understand the differences between the agents we
now provide several more observations.

As illustrated in Figure 3a, for a discount rate of 0.99, often,
the standard PPO is initially on par with the time-aware PPO
and later starts to plateau (e.g. Walker2d-v1 and Humanoid-
v1). This is due to the fact that, in some domains, the agents
start to experience terminations due to the time limit more
frequently as they become better, at which point the time-
unaware agent begins to perceive inconsistent returns for
seemingly similar states. The advantage of time-awareness
becomes even clearer in the case of a discount rate of 1
where the time-unaware PPO often diverges drastically (see
Figure 3b). This is mainly because, in this case, the time-
unaware agent experiences much more significant conflicts
as returns are now the sum of the undiscounted rewards.

Figure 4 shows the learned state-value estimations for
InvertedPendulum-v1 which perfectly illustrate the differ-
ence between a time-aware agent and a time-unaware one
in terms of their estimated expected returns. While time-
awareness enables PPO to learn an accurate exponential
or linear decay of the expected return with time, the time-
unaware one only learns a constant estimate.

Time-awareness does not only help agents by avoiding the
conflicting updates. In fact, in naturally time-limited tasks
where the agents have to maximize their performance for a
limited time, time-aware agents can demonstrate interesting
ways of achieving this objective. Figure 5 shows the aver-
age final pose of the time-aware (middle) and time-unaware
(right) agents. We can see that the time-aware agent ro-
bustly learns to jump towards the end of its time in order to
maximize its expected return, resulting in a “photo finish”.
Finally, Figure 5 (bottom-right) shows an interesting behav-
ior demonstrated by the time-unaware PPO in the case of
γ = 1 that is to actively stay in place, accumulating at least
the rewards coming from the bonus for staying alive.
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Figure 3. Performance comparison of PPO with and without the remaining time in input on several continuous control tasks from the
OpenAI’s MuJoCo Gym (T = 1000 for all except T = 50 for Reacher-v1). The averaged sum of rewards and standard errors are shown
with respect to the number of training steps. On multiple tasks, the proposed time-aware PPO (TA-PPO) outperforms the standard PPO,
especially for the case with a large discount factor.

In this section, we explored the scenario where the aim is
to learn a policy that maximizes the expected return over
a limited time. We argued for inclusion of a notion of the
remaining time as part of the agent’s observation to avoid
state-aliasing which can cause suboptimal policies and in-
stability. However, this scenario is not always ideal as there
are cases where, even though the agent experiences time
limits in its interaction with the environment, the objective
is to learn a policy for a time-unlimited task. For instance,
as we saw for Hopper-v1, the learned policy that maximizes
the return over 300 steps generally results in a photo finish
which would lead to a fall and subsequent termination if the
simulation was to be extended. Such a policy is not viable if
the goal is to learn to move forward for an indefinite period.
One solution is to not have time limits during training. How-
ever, it is often more efficient to instead have short snippets
of interactions to expose the agent to diverse experiences.
In the next section, we explore this case and show how to

effectively learn in such domains from partial episodes.

3. Partial-episode bootstrapping for
time-unlimited tasks

In tasks that are not time-limited by nature, the learning ob-
jective is to optimize the expectation of the return Gt from
Equation 1. While the agent has to maximize its expected
return over an indefinite (possibly infinite) period, it is de-
sirable to still use time limits in order to frequently reset the
environment and increase the diversity of the agent’s experi-
ences. A common mistake, however, is to then consider the
terminations due to such time limits as environmental ones.
This is equivalent to optimizing for returns Gt:T (Equa-
tion 2), not accounting for the possible future rewards that
could have been experienced if no time limits were used.

In the case of bootstrapping methods, we argue for contin-
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Figure 4. Learned state-value estimations on InvertedPendulum-v1
(T = 1000) of the time-aware (blue) and the standard (orange)
PPO agents. The first one quickly learns an accurate value while
the second one slowly learns an average.

uing to bootstrap at states where termination is due to the
time limit. The state-value function of a policy at time t can
be rewritten in terms of the time-limited return Gt:T and the
value from the last state vπ(ST ):

vπ(s) = Eπ
[
Gt:T + γT−tvπ(ST ) | St = s

]
(5)

By denoting an estimate of the state-value function by v̂π,
the target y for a one-step TD update, after transitioning to
a state s′ and receiving a reward r, is:

y =

{
r at environmental terminations
r + γv̂π(s

′) otherwise (including timeouts)
(6)

An agent without partial-episode bootstrapping would not
bootstrap at timeout terminations. Similarly to Equation 4,
the conflicting updates for estimating the value of the same
state lead to an approximate average of these updates.

In the previous section, one of the issues came from boot-
strapping values from states that were out-of-reach, letting
the agent falsely believe that more rewards were available
after. On the opposite, the problem presented here is when
systematic bootstrapping is not performed from states at
the time limit and thus, forgetting that more rewards would
actually be available thereafter.

Related to the proposed partial-episode bootstrapping (PEB),
White (2017) introduces a way to consider episodic tasks
as a continuing one with a variable discount factor be-
tween them. Our approach however differs in several ways:
(1) PEB is more suitable for tasks that do not necessarily
have an underlying episodic structure such as Hopper-v1.
(2) In the proposed PEB approach, the agent does not experi-
ence a transition from the last state of a partial episode to the
first state of the next episode, thus enabling environmental
resets based on time limits during training. (3) PEB uses
a constant discount factor, allowing the learning of correct
indefinite-horizon policies from partial episodes.

TA-PPO

PPO

Figure 5. Average last pose on Hopper-v1 (T = 300) with the
vertical termination threshold of 0.7 meters in red. The time-aware
agent (TA-PPO) learns to jump forward just before the time limit
in order to maximize its forward distance. The time-unaware
PPO agent does not learn this behavior and its training is highly
destabilized when the discount factor is large.

3.1. The Two-Goals Gridworld problem

We revisit the gridworld environment from Section 2.2.
While previously the agent’s task was to learn an optimal
policy for a given time limit, we now consider how an agent
can learn a good policy for an indefinite period from partial-
episode experiences. The same setup and tabular Q-learning
from Section 2.2 were used, but instead of considering ter-
minations due to time limits as environmental ones, boot-
strapping is maintained from the non-terminal states that
are reached at the time limits. This modification allows our
agent to learn the time-unlimited optimal policy of always
going for the most rewarding goal (see Figure 1c). On the
other hand, while the standard agent that is not performing
the final-step bootstrapping (see Figure 1a) has values from
out-of-reach cells leaking into its learned value function,
these updates do not occur in sufficient proportion to let the
agent learn the time-unlimited optimal policy.

For the next experiments, we again used PPO but with two
key modifications for partial-episode-bootstrapping. First,
we removed the Gym’s TimeLimit wrapper that is included
by default for all environments and which enforces termi-
nation when time limits are reached. Second, we modified
the PPO’s implementation to enable continuing to bootstrap
when the environment is reset but no termination is encoun-
tered. This involves changing the implementation of the
generalized advantage estimator (GAE) (Schulman et al.,
2016). Whereas GAE uses an exponentially-weighted aver-
age of n-step value estimations for bootstrapping which is
more complex than the one-step lookahead bootstrapping
explained in Equation 6, continuing to bootstrap from the
last non-terminal states is the only modification required for
the considered approach.
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Figure 6. Performance comparison of PPO with and without partial-episode bootstrapping with γ = 0.99 on several continuous control
tasks. The averaged scores and standard errors are shown with respect to the number of training steps. For Hopper-v1 and Walker2d-v1,
the evaluation episodes are limited to 106 time steps and the discounted sum of rewards is represented, while for InfiniteCubePusher-v0
the evaluations are limited to 1000 time steps and the number of targets reached per episode is represented.

3.2. Hopper and Walker

Here, we consider the Hopper-v1 and Walker2d-v1 environ-
ments from Section 2.4, but instead aim to learn a policy that
maximizes the agent’s expected return over a time-unlimited
horizon. The goal here is to show that by continuing to boot-
strap from states at timeout terminations it is possible to
learn good policies for time-unlimited domains. Figure 6
(left and middle) demonstrates performance evaluations of
the standard PPO against one with partial-episode bootstrap-
ping (PEB). During training, partial episodes were limited
to 300 time steps, while during evaluation episodes were
limited to 106 time steps to prevent infinitely long evalu-
ation episodes. The standard PPO agent was also trained
with the default time limit (T = 1000) for comparison. The
results show that partial-episode bootstrapping allows our
agent to significantly outperform the standard PPO and that
training on short interactions is sufficient.

3.3. The Infinite Cube Pusher task

To demonstrate the ability of
our agent in optimizing for
an infinite-horizon (no terminal
state) objective, we propose a
novel MuJoCo domain consist-
ing of a torque-controlled ball,
on the horizontal plane, that is
used to push a cube to specified
target positions. Once the cube
has touched the target, the agent is rewarded and the target
is moved away from the cube to a new random position.
Because the task lacks terminal states, it can continue indef-
initely. The terrain is surrounded by fixed bounding walls.
The inner edge of the walls stops the cube but not the ball in
order to let the agent move the cube even if it is in a corner.
The environment’s state representation consists of the coor-
dinates of the ball, the cube, and the target, the velocities of
the ball and the cube, and the rotation of the cube. The agent
receives a reward of 1 every time the cube reaches the target.

Due to the absence of reward shaping (Ng et al., 1999), it is
necessary to limit training episodes in time to diversify the
experiences and learn to solve the task. Therefore, during
training, a time limit of 50 time steps was used, sufficient
to push the cube to one target in most cases. During evalua-
tion, however, 1000 steps were used to allow successfully
reaching several targets. An entropy coefficient of 0.01 was
used to encourage exploration. We found this value to yield
best performance for both agents. Figure 6 (right) shows
that our agent drastically outperforms the standard PPO.

3.4. Experience replay

Sampling batches of transitions from a buffer of past experi-
ence, known as experience replay (Lin, 1992), has proved
to be highly effective in stabilizing the training of artifi-
cial neural networks by decorrelating updates and avoiding
the rapid forgetting of rare experiences (Mnih et al., 2015;
Schaul et al., 2016). However, we argue that the perceived
non-stationarity, induced by not properly handling time lim-
its, is incompatible with experience replay. Indeed, the
timeout-occurrence distribution changes with the behavior
of the agent, and thus past transitions become obsolete.

While both time-awareness and partial-episode bootstrap-
ping (PEB) provide ways to solve this issue, we chose to
illustrate the effect of PEB on one of the tasks presented in
(Zhang & Sutton, 2017). In the latter, the authors demon-
strate that experience replay can significantly hurt the learn-
ing process if the size of the replay buffer is not tuned well.
One of the environments used is a deterministic gridworld
with a fixed starting state and goal, shown in Figure 7. As
proposed by the authors, tabular Q-learning is used with
values initialized to 0, a penalty of −1 at each time step, no
discount, a time limit T = 200, and an ε-greedy exploration
using a fixed 10% chance of random actions. Figure 7 shows
the performance with respect to the number of training steps,
averaged over 30 seeds, from 0 to 29. We successfully repli-
cated the figure showing that the performance deteriorates
very quickly with buffer size and demonstrate that by simply
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Figure 7. Performance comparison of tabular Q-learning with and without partial-episode bootstrapping with γ = 0.99 on the Difficult
Gridworld (T = 200) problem presented in (Zhang & Sutton, 2017). The averaged scores and standard errors are shown with respect to the
number of training steps. When timeout terminations are not properly considered, experience replay significantly hurts the performance,
while by simply continuing to bootstrap whenever a timeout termination is encountered, the learning is much faster and varying the buffer
size has almost no effect.

bootstrapping from states when the time limit is reached the
effect of the buffer size is vastly diminished.

4. Discussion
We showed in Section 2 that time-awareness is required
for correct credit assignment in domains where the agent
has to optimize its performance over a time-limited horizon.
However, common time-unaware agents still often manage
to perform relatively well. This could be due to several
reasons including: if time limits are so long that timeouts
are hardly ever experienced (e.g. in the Arcade Learning
Environment (ALE) (Bellemare et al., 2013; Machado et al.,
2017) domains where T = 5 minutes), if there are clues in
the observations that are correlated with time (e.g. the for-
ward distance), if it is not likely to observe the same states
at different remaining times, or if the discount factor is
sufficiently small to reduce the impact of the confusion. Fur-
thermore, many methods exist to handle POMDPs (Lovejoy,
1991). In deep learning (LeCun et al., 2015; Schmidhuber,
2015), it is highly common to use a stack of previous obser-
vations or recurrent neural networks (RNNs) (Goodfellow
et al., 2016) to address partial observations (Wierstra et al.,
2009). These solutions may to an extent help when a notion
of the remaining time is not included as part of the agent’s
input. However, including this information is much simpler
and allows better diagnosis of the learned policies. The
considered approach is rather generic and can be applied to
domains with varying time limits. It is also interesting to
note that time-awareness can allow, to an extent, the agent to
learn open-loop (state-independent) policies which can be
easier to learn than closed-loop ones. For example, if a task
involves a fixed starting state and no stochastic transitions,
then an optimal policy can rely only on the time. Finally, in
real-world applications, such as robotics, the real clock time
can be used in place of discrete fixed time steps.

In order for the partial-episode bootstrapping method in Sec-
tion 3 to work, as is the case for bootstrapping methods in

general, the agent needs to use reliable predictions. This is
in general resolved by enabling sufficient exploration. How-
ever, when the interactions are limited in time, exploration
of the full state-space may not be feasible from fixed starting
states. Thus, a good way to allow appropriate exploration in
such domains is to sufficiently randomize the initial states. It
is worth noting that partial-episode bootstrapping is generic
in that it is not restricted to partial episodes only due to time
limits. In fact, this approach is valid for any early termi-
nation causes. For example, it is common in curriculum
learning to start from states nearby the goals and gradually
expand to further ones (Florensa et al., 2017). In this case,
it can be helpful to stitch the learned values by terminating
the episodes and bootstrapping as soon as the agent enters a
well-known state.

5. Conclusion
We considered the problem of learning optimal policies in
time-limited and time-unlimited domains using time-limited
interactions. We showed that time limits should be care-
fully manipulated to avoid state-aliasing and perceived non-
stationarity of the environment. We explained that when
learning policies for time-limited tasks, it is important to
include a notion of the remaining time as part of the agent’s
input. We then showed that, when learning policies for time-
unlimited tasks, it is necessary for correct value estimation,
to continue bootstrapping at the end of the partial episodes
when termination is due to time limits, or any early termina-
tion causes other than the environmental ones. In both cases
we observed significant improvements in the performance
of the considered reinforcement learning algorithms.
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